位置: IT常识 - 正文
目录
Mobilenetv2的改进
浅层特征和深层特征的融合
完整代码
参考资料
推荐整理分享DeepLabV3+:Mobilenetv2的改进以及浅层特征和深层特征的融合,希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!
在DeeplabV3当中,一般不会5次下采样,可选的有3次下采样和4次下采样。因为要进行五次下采样的话会损失较多的信息。
在这里mobilenetv2会从之前写好的模块中得到,但注意的是,我们在这里获得的特征是[-1],也就是最后的1x1卷积不取,只取循环完后的模型。
down_idx是InvertedResidual进行的次数。
# t, c, n, s[1, 16, 1, 1], [6, 24, 2, 2], 2[6, 32, 3, 2], 4[6, 64, 4, 2], 7 [6, 96, 3, 1],[6, 160, 3, 2], 14[6, 320, 1, 1],根据下采样的不同,当downsample_factor=8时,进行3次下采样,对倒数两次,步长为2的InvertedResidual进行参数的修改,让步长变为1,膨胀系数为2。
当downsample_factor=16时,进行4次下采样,只需对最后一次进行参数的修改。
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom functools import partialfrom net.mobilenetv2 import mobilenetv2from net.ASPP import ASPPclass MobileNetV2(nn.Module): def __init__(self, downsample_factor=8, pretrained=True): super(MobileNetV2, self).__init__() model = mobilenetv2(pretrained) self.features = model.features[:-1] self.total_idx = len(self.features) self.down_idx = [2, 4, 7, 14] if downsample_factor == 8: for i in range(self.down_idx[-2], self.down_idx[-1]): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=4) ) elif downsample_factor == 16: for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x): low_level_features = self.features[:4](x) x = self.features[4:](low_level_features) return low_level_features, xforward当中,会输出两个特征层,一个是浅层特征层,具有浅层的语义信息;另一个是深层特征层,具有深层的语义信息。
浅层特征和深层特征的融合具有高语义信息的部分先进行上采样,低语义信息的特征层进行1x1卷积,二者进行特征融合,再进行3x3卷积进行特征提取
self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor)这一步就是获得那个绿色的特征层;
low_level_features = self.shortcut_conv(low_level_features)从这里将是对浅层特征的初步处理(1x1卷积);
x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)x = self.cat_conv(torch.cat((x, low_level_features), dim=1))上采样后进行特征融合,这样我们输入和输出的大小才相同,每一个像素点才能进行预测;
完整代码# deeplabv3plus.pyimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom functools import partialfrom net.xception import xceptionfrom net.mobilenetv2 import mobilenetv2from net.ASPP import ASPPclass MobileNetV2(nn.Module): def __init__(self, downsample_factor=8, pretrained=True): super(MobileNetV2, self).__init__() model = mobilenetv2(pretrained) self.features = model.features[:-1] self.total_idx = len(self.features) self.down_idx = [2, 4, 7, 14] if downsample_factor == 8: for i in range(self.down_idx[-2], self.down_idx[-1]): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=4) ) elif downsample_factor == 16: for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x): low_level_features = self.features[:4](x) x = self.features[4:](low_level_features) return low_level_features, xclass DeepLab(nn.Module): def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16): super(DeepLab, self).__init__() if backbone=="xception": # 获得两个特征层:浅层特征 主干部分 self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 2048 low_level_channels = 256 elif backbone=="mobilenet": # 获得两个特征层:浅层特征 主干部分 self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 320 low_level_channels = 24 else: raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone)) # ASPP特征提取模块 # 利用不同膨胀率的膨胀卷积进行特征提取 self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor) # 浅层特征边 self.shortcut_conv = nn.Sequential( nn.Conv2d(low_level_channels, 48, 1), nn.BatchNorm2d(48), nn.ReLU(inplace=True) ) self.cat_conv = nn.Sequential( nn.Conv2d(48+256, 256, kernel_size=(3,3), stride=(1,1), padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Conv2d(256, 256, kernel_size=(3,3), stride=(1,1), padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.1), ) self.cls_conv = nn.Conv2d(256, num_classes, kernel_size=(1,1), stride=(1,1)) def forward(self, x): H, W = x.size(2), x.size(3) # 获得两个特征层,low_level_features: 浅层特征-进行卷积处理 # x : 主干部分-利用ASPP结构进行加强特征提取 low_level_features, x = self.backbone(x) x = self.aspp(x) low_level_features = self.shortcut_conv(low_level_features) # 将加强特征边上采样,与浅层特征堆叠后利用卷积进行特征提取 x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) x = self.cat_conv(torch.cat((x, low_level_features), dim=1)) x = self.cls_conv(x) x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) return x参考资料DeepLabV3-/论文精选 at main · Auorui/DeepLabV3- (github.com)
(6条消息) 憨批的语义分割重制版9——Pytorch 搭建自己的DeeplabV3+语义分割平台_Bubbliiiing的博客-CSDN博客
下一篇:在妈妈身旁玩耍的北极熊宝宝们,加拿大曼尼托巴省 (© Andre Gilden/Minden Pictures)(在妈妈身边的说说)
友情链接: 武汉网站建设