位置: IT常识 - 正文

Python:支持向量机SVM的使用(Python支持向量能干什么)

编辑:rootadmin

推荐整理分享Python:支持向量机SVM的使用(Python支持向量能干什么),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:Python支持向量积预测,Python支持向量积预测,python支持向量机代码,python支持向量机代码,python支持向量机代码,Python支持向量机模型,python支持向量机回归预测模型,python支持向量机回归预测模型,内容如对您有帮助,希望把文章链接给更多的朋友!

除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。

一、导入sklearn算法包

Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html#support-vector-machines。

skleran中集成了许多算法,其导入包的方式如下所示:

·逻辑回归:from sklearn.linear_model import LogisticRegression

·朴素贝叶斯:from sklearn.naive_bayes import GaussianNB

·K-近邻:from sklearn.neighbors import KNeighborsClassifier

·决策树:from sklearn.tree import DecisionTreeClassifier

·支持向量机:from sklearn import svm

二、sklearn中svc的使用

(1)使用numpy中的loadtxt读入数据文件

loadtxt()的使用方法:

·fname:文件路径。eg:C:/Dataset/iris.txt。

·dtype:数据类型。eg:float、str等。

·delimiter:分隔符。eg:‘,’。

·converters:将数据列与转换函数进行映射的字典。

·eg:{1:fun},含义是将第2列对应转换函数进行转换。

·usecols:选取数据的列。

以Iris兰花数据集为例子:

由于从UCI数据库中下载的Iris原始数据集的样子是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa, Iris-versicolor, Iris-virginica。  

当使用numpy中的loadtxt函数导入该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做一个工作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

首先,我们要写出一个转换函数:

defiris_type(s):it={'Iris-setosa':0,'Iris-versicolor':1,'Iris-virginica':2}returnit[s]

接下来读入数据,converters={4: iris_type}中“4”指的是第5列:

path=u'D:/f盘/python/学习/iris.data'#数据文件路径data=np.loadtxt(path,dtype=float,delimiter=',',converters={4:iris_type})

读入结果:

(2)将Iris分为训练集与测试集

x,y=np.split(data,(4,),axis=1)x=x[:,:2]x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=1,train_size=0.6)

1.split(数据,分割位置,轴=1(水平分割) or 0(垂直分割))。

2.x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。

3.sklearn.model_selection.train_test_split随机划分训练集与测试集。train_test_split(train_data,train_target,test_size=数字, random_state=0)

参数解释:

Python:支持向量机SVM的使用(Python支持向量能干什么)

·train_data:所要划分的样本特征集

·train_target:所要划分的样本结果

·test_size:样本占比,如果是整数的话就是样本的数量

·random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

(3)训练svm分类器

#clf=svm.SVC(C=0.1,kernel='linear',decision_function_shape='ovr')clf=svm.SVC(C=0.8,kernel='rbf',gamma=20,decision_function_shape='ovr')clf.fit(x_train,y_train.ravel())

kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。

decision_function_shape='ovr'时,为one v rest,即一个类别与其他类别进行划分,

decision_function_shape='ovo'时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

(4)计算svc分类器的准确率

printclf.score(x_train,y_train)#精度y_hat=clf.predict(x_train)show_accuracy(y_hat,y_train,'训练集')printclf.score(x_test,y_test)y_hat=clf.predict(x_test)show_accuracy(y_hat,y_test,'测试集')

结果为:

如果想查看决策函数,可以通过decision_function()实现

print'decision_function:\n',clf.decision_function(x_train)print'\npredict:\n',clf.predict(x_train)

结果为:

decision_function中每一列的值代表距离各类别的距离。

(5)绘制图像

1.确定坐标轴范围,x,y轴分别表示两个特征

x1_min,x1_max=x[:,0].min(),x[:,0].max()#第0列的范围x2_min,x2_max=x[:,1].min(),x[:,1].max()#第1列的范围x1,x2=np.mgrid[x1_min:x1_max:200j,x2_min:x2_max:200j]#生成网格采样点grid_test=np.stack((x1.flat,x2.flat),axis=1)#测试点#print'grid_test=\n',grid_testgrid_hat=clf.predict(grid_test)#预测分类值grid_hat=grid_hat.reshape(x1.shape)#使之与输入的形状相同

这里用到了mgrid()函数,该函数的作用这里简单介绍一下:

假设假设目标函数F(x,y)=x+y。x轴范围13,y轴范围46,当绘制图像时主要分四步进行:

【step1:x扩展】(朝右扩展):

[111][222][333]

【step2:y扩展】(朝下扩展):

[456][456][456]

【step3:定位(xi,yi)】:

[(1,4)(1,5)(1,6)][(2,4)(2,5)(2,6)][(3,4)(3,5)(3,6)]

【step4:将(xi,yi)代入F(x,y)=x+y】

因此这里x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]后的结果为:

再通过stack()函数,axis=1,生成测试点

2.指定默认字体

mpl.rcParams['font.sans-serif']=[u'SimHei']mpl.rcParams['axes.unicode_minus']=False

3.绘制

cm_light=mpl.colors.ListedColormap(['#A0FFA0','#FFA0A0','#A0A0FF'])cm_dark=mpl.colors.ListedColormap(['g','r','b'])plt.pcolormesh(x1,x2,grid_hat,cmap=cm_light)plt.scatter(x[:,0],x[:,1],c=y,edgecolors='k',s=50,cmap=cm_dark)#样本plt.scatter(x_test[:,0],x_test[:,1],s=120,facecolors='none',zorder=10)#圈中测试集样本plt.xlabel(u'花萼长度',fontsize=13)plt.ylabel(u'花萼宽度',fontsize=13)plt.xlim(x1_min,x1_max)plt.ylim(x2_min,x2_max)plt.title(u'鸢尾花SVM二特征分类',fontsize=15)#plt.grid()plt.show()

pcolormesh(x,y,z,cmap)这里参数代入x1,x2,grid_hat,cmap=cm_light绘制的是背景。

scatter中edgecolors是指描绘点的边缘色彩,s指描绘点的大小,cmap指点的颜色。

xlim指图的边界。

最终结果为:

python学习网,大量的免费python视频教程,欢迎在线学习!

本文链接地址:https://www.jiuchutong.com/zhishi/311740.html 转载请保留说明!

上一篇:python import的本质探究(python中import语句)

下一篇:python函数怎么返回值(Python函数怎么返回)

  • 季度所得税费用如何计提
  • 汇算清缴常见问题
  • 印花税购销合同计税金额怎么算
  • 以个人名义开的发票
  • 抵款车辆低价卖给职工账务处理:
  • 组织投标工作
  • 费用跨年入账所得怎么算
  • 汽车贷款利息是什么
  • 出口货物如果没收怎么办
  • 农户贷款免征增值税吗?
  • 一般纳税人开具房屋租赁费税率
  • 所得税费用是在哪个科目
  • 我的初级备考日记--你都没坚持,还谈什么未来
  • 个人租赁汽车给公司怎么开发票
  • 企业涉及预计负债的主要事项包括
  • 归还法人前期垫付款项
  • 没有发票的固定资产可以折旧吗
  • 华为分享的文件在电脑哪个文件夹
  • 以前年度多计提的附加税怎么调账
  • windows history命令
  • wcu.exe是什么
  • 公司准备上市到真正上市要多久
  • kpupgrader.exe是什么
  • nuxt怎么用
  • php imagestring
  • 职工住院的护理费标准
  • 补充养老保险的特点
  • 阿里云天池大赛pdf
  • 打开苹果safari浏览器
  • 贷款减值损失准备怎么算
  • 日本的萤火虫
  • 企业开办期间的税费
  • vue中watch监听对象的变化
  • 会计年报表怎么做
  • 银行结算方式有哪几种方式?其具体内容是什么?
  • 关于出售使用过的东西
  • 谷歌colab免费额度
  • 尚品汇在哪
  • 应收账款周转率下降说明什么
  • 金融资产发生减值的客观证据包括哪些
  • 个体户开普票有没有完税证明
  • 企业发生销售退回时,不论销售退回的商品
  • 物流公司驾驶员工资计算方式
  • 药店主营业务成本怎么算出来的
  • 代购进口货物垫付方案
  • 收到现金股利是什么意思
  • 免税申报表里的免税销售额是不含税
  • 汽车4s店收到保险佣金做账
  • 投资者向企业投入资本的形式
  • 未分配利润太多的危害
  • 固定资产原值减少后如何计提折旧
  • 退回资金怎么做账
  • 股东如何收回投资款
  • 应收及预付款项的坏账损失应当于实际发生时计入
  • 公司注销其他应收款余额要交税吗
  • 收据 和发票
  • 承租人和共同承租人
  • 小规模纳税人公司可以开专票吗
  • sqlserver2005iis警告
  • sqlserver怎么用sql创建表
  • mysql主从复制原理以及架构
  • win10 10月更新
  • linux的用法
  • windowsxpwifi
  • 硬件茶谈win10系统安装
  • 不经过回收站直接删除文件的操作是
  • 微信小程序选择地址
  • react用什么ui
  • c/s模式的例子
  • js隐写
  • JavaScript中的变量名不区分大小写
  • node性能优化
  • jQuery实现获取table表格第一列值的方法
  • 手机360安卓桌面怎么去除广告
  • python 脚本编写
  • [推荐]抖音上那些好看的视频和有才的帐号
  • 欢迎使用微信支付
  • 亦庄地税局税务局营业大厅
  • 安徽省国家税务局网
  • 联通前面加什么可以隐藏号码
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设