位置: IT常识 - 正文

Python数学建模三剑客之Numpy(python数学建模资料)

编辑:rootadmin

推荐整理分享Python数学建模三剑客之Numpy(python数学建模资料),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:python高数建模,python数学建模资料,python高数建模,python数学建模资料,python高数建模,python高数建模,Python数学建模三剑客,python小白的数学建模课,内容如对您有帮助,希望把文章链接给更多的朋友!

三剑客之Numpy

numpy是一个开源的python科学计算库,包含了很多实用的数学函数,涵盖线性代数、傅里叶变换和随机数生成等功能。最初的numpy其实是scipy的一部分,后来才从scipy中分离出来。

numpy不是python的标准库,需要单独安装。假定你的运行环境已经安装了python包管理工具pip,numpy的安装就非常简单:

pipinstallnumpy

一、数组对象

ndarray是多维数组对象,也是numpy最核心的对象。在numpy中,数组的维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。通常,一个numpy数组的所有元素都是同一种类型的数据,而这些数据的存储和数组的形式无关。

下面的例子,创建了一个三维的数组(在导入numpy时,一般都简写成np)。

importnumpyasnpa=np.array([[1,2,3],[4,5,6],[7,8,9]])

1、数据类型

numpy支持的数据类型主要有布尔型(bool)、整型(integrate)、浮点型(float)和复数型(complex),每一种数据类型根据占用内存的字节数又分为多个不同的子类型。常见的数据类型见下表。

2、创建数组

通常,我们用np.array()创建数组。如果仅仅是创建一维数组,也可以使用np.arange()或者np.linspace()的方法。np.zeros()、np.ones()、np.eye()则可以构造特殊的数据。np.random.randint()和np.random.random()则可以构造随机数数组。

>>>np.array([[1,2,3],[4,5,6]])#默认元素类型为int32array([[1,2,3],[4,5,6]])>>>np.array([[1,2,3],[4,5,6]],dtype=np.int8)#指定元素类型为int8array([[1,2,3],[4,5,6]],dtype=int8)>>>np.arange(5)#默认元素类型为int32array([0,1,2,3,4])>>>np.arange(3,8,dtype=np.int8)#指定元素类型为int8array([3,4,5,6,7],dtype=int8)>>>np.arange(12).reshape(3,4)#改变shapearray([[0,1,2,3],[4,5,6,7],[8,9,10,11]])>>>np.linspace(1,2,5)#从1到2生成5个浮点数array([1.,1.25,1.5,1.75,2.])>>>np.zeros((2,3))#全0数组array([[0.,0.,0.],[0.,0.,0.]])>>>np.ones((2,3))#全1数组array([[1.,1.,1.],[1.,1.,1.]])>>>np.eye(3)#主对角线元素为1其他元素为0array([[1.,0.,0.],[0.,1.,0.],[0.,0.,1.]])>>>np.random.random((2,3))#生成[0,1)之间的随机浮点数array([[0.84731148,0.8222318,0.85799278],[0.59371558,0.92330741,0.04518351]])>>>np.random.randint(0,10,(3,2))#生成[0,10)之间的随机整数array([[2,4],[8,3],[8,5]])

3、构造复杂数组

很多时候,我们需要从简单的数据结构,构造出复杂的数组。例如,用一维的数据生成二维格点。

(1)重复数组:tile

>>>a=np.arange(5)>>>aarray([0,1,2,3,4])>>>np.tile(a,2)array([0,1,2,3,4,0,1,2,3,4])>>>np.tile(a,(3,2))array([[0,1,2,3,4,0,1,2,3,4],[0,1,2,3,4,0,1,2,3,4],[0,1,2,3,4,0,1,2,3,4]])

(2)重复元素:repeat

>>>a=np.arange(5)>>>aarray([0,1,2,3,4])>>>a.repeat(2)array([0,0,1,1,2,2,3,3,4,4])

(3)一维数组网格化:meshgrid

>>>a=np.arange(5)>>>b=np.arange(5,10)>>>np.meshgrid(a,b)[array([[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4]]),array([[5,5,5,5,5],[6,6,6,6,6],[7,7,7,7,7],[8,8,8,8,8],[9,9,9,9,9]])]>>>

(4)指定范围和分割方式的网格化:mgrid

>>>np.mgrid[0:1:2j,1:2:3j]array([[[0.,0.,0.],[1.,1.,1.]],[[1.,1.5,2.],[1.,1.5,2.]]])>>>np.mgrid[0:1:0.3,1:2:0.4]array([[[0.,0.,0.],[0.3,0.3,0.3],[0.6,0.6,0.6],[0.9,0.9,0.9]],[[1.,1.4,1.8],[1.,1.4,1.8],[1.,1.4,1.8],[1.,1.4,1.8]]])

上面的例子中用到了虚数。构造虚数的方法如下:

>>>complex(2,5)(2+5j)

4、数组的属性

numpy的数组对象除了一些常规的属性外,也有几个类似转置、扁平迭代器等看起来更像是方法的属性。扁平迭代器也许是遍历多维数组的一个简明方法,下面的代码给出了一个例子。

>>>a=np.array([[1,2,3],[4,5,6]])>>>a.dtype#数组元素的数据类型dtype('int32')>>>a.dtype.itemsize#数组元素占据的内存字节数4>>>a.itemsize#数组元素占据的内存字节数4>>>a.shape#数组的维度(2,3)>>>a.size#数组元素个数6>>>a.T#数组行变列,类似于transpose()array([[1,4],[2,5],[3,6]])>>>a.flat#返回一个扁平迭代器,用于遍历多维数组<numpy.flatiterobjectat0x037188F0>>>>foritemina.flat:printitem

5、改变数组维度

numpy数组的存储顺序和数组的维度是不相干的,因此改变数组的维度是非常便捷的操作,除resize()外,这一类操作不会改变所操作的数组本身的存储顺序。

>>>a=np.array([[1,2,3],[4,5,6]])>>>a.shape#查看数组维度(2,3)>>>a.reshape(3,2)#返回3行2列的数组array([[1,2],[3,4],[5,6]])>>>a.ravel()#返回一维数组array([1,2,3,4,5,6])>>>a.transpose()#行变列(类似于矩阵转置)array([[1,4],[2,5],[3,6]])>>>a.resize((3,2))#类似于reshape,但会改变所操作的数组>>>aarray([[1,2],[3,4],[5,6]])

6、索引和切片

对于一维数组的索引和切片,numpy和python的list一样,甚至更灵活。

a=np.arange(9)>>>a[-1]#最后一个元素8>>>a[2:5]#返回第2到第5个元素array([2,3,4])>>>a[:7:3]#返回第0到第7个元素,步长为3array([0,3,6])>>>a[::-1]#返回逆序的数组array([8,7,6,5,4,3,2,1,0])

假设有一栋2层楼,每层楼内的房间都是3排4列,那我们可以用一个三维数组来保存每个房间的居住人数(当然,也可以是房间面积等其他数值信息)。

>>>a=np.arange(24).reshape(2,3,4)#2层3排4列>>>aarray([[[0,1,2,3],[4,5,6,7],[8,9,10,11]],[[12,13,14,15],[16,17,18,19],[20,21,22,23]]])>>>a[1][2][3]#虽然可以这样23>>>a[1,2,3]#但这才是规范的用法23>>>a[:,0,0]#所有楼层的第1排第1列array([0,12])>>>a[0,:,:]#1楼的所有房间,等价与a[0]或a[0,...]array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])>>>a[:,:,1:3]#所有楼层所有排的第2到4列array([[[1,2],[5,6],[9,10]],[[13,14],[17,18],[21,22]]])>>>a[1,:,-1]#2层每一排的最后一个房间array([15,19,23])

7、数组合并

Python数学建模三剑客之Numpy(python数学建模资料)

数组合并除了下面介绍的水平合并、垂直合并、深度合并外,还有行合并、列合并,以及concatenate()等方式。假如你比我还懒,那就只了解前三种方法吧,足够用了。

>>>a=np.arange(9).reshape(3,3)>>>b=np.arange(9,18).reshape(3,3)>>>aarray([[0,1,2],[3,4,5],[6,7,8]])>>>barray([[9,10,11],[12,13,14],[15,16,17]])>>>np.hstack((a,b))#水平合并array([[0,1,2,9,10,11],[3,4,5,12,13,14],[6,7,8,15,16,17]])>>>np.vstack((a,b))#垂直合并array([[0,1,2],[3,4,5],[6,7,8],[9,10,11],[12,13,14],[15,16,17]])>>>np.dstack((a,b))#深度合并array([[[0,9],[1,10],[2,11]],[[3,12],[4,13],[5,14]],[[6,15],[7,16],[8,17]]])

8、数组拆分

拆分是合并的逆过程,概念是一样的,但稍微有一点不同:

>>>a=np.arange(9).reshape(3,3)>>>np.hsplit(a,3)#水平拆分,返回list[array([[0],[3],[6]]),array([[1],[4],[7]]),array([[2],[5],[8]])]>>>np.vsplit(a,3)#垂直拆分,返回list[array([[0,1,2]]),array([[3,4,5]]),array([[6,7,8]])]>>>a=np.arange(27).reshape(3,3,3)>>>np.dsplit(a,3)#深度拆分,返回list[array([[[0],[3],[6]],[[9],[12],[15]],[[18],[21],[24]]]),array([[[1],[4],[7]],[[10],[13],[16]],[[19],[22],[25]]]),array([[[2],[5],[8]],[[11],[14],[17]],[[20],[23],[26]]])]

9、数组运算

数组和常数的四则运算,是数组的每一个元素分别和常数运算;数组和数组的四则运算则是两个数组对应元素的运算(两个数组有相同的shape,否则抛出异常)。

>>>a=np.arange(4,dtype=np.float32).reshape(2,2)>>>b=np.arange(4,8,dtype=np.float32).reshape(2,2)>>>a+2#数组和常数可以进行四则运算array([[2.,3.],[4.,5.]],dtype=float32)>>>a/b#数组和数组可以进行四则运算array([[0.,0.2],[0.33333334,0.42857143]],dtype=float32)>>>a==b#最神奇的是,数组可以判断对应元素是否相等array([[False,False],[False,False]],dtype=bool)>>>(a==b).all()#判断数组是否相等False

特别提示:如果想对数组内符合特定条件的元素做特殊处理,下面的代码也许有用。

>>>a=np.arange(6).reshape((2,3))>>>aarray([[0,1,2],[3,4,5]])>>>(a>2)&(a<=4)array([[False,False,False],[True,True,False]],dtype=bool)>>>a[(a>2)&(a<=4)]array([3,4])>>>a[(a>2)&((a<=4))]+=10>>>aarray([[0,1,2],[13,14,5]])

10、数组方法和常用函数

数组对象本身提供了计算算数平均值、求最小值等内置方法,numpy也提供了很多实用的函数。为了缩减篇幅,下面的代码仅以一维数组为例,展示了这些方法和函数用法。事实上,大多数情况下这些方法和函数对于多维数组同样有效,只有少数例外,比如compress函数。

>>>a=np.array([3,2,4])>>>a.sum()#所有元素的和9>>>a.prod()#所有元素的乘积24>>>a.mean()#所有元素的算数平均值3.0>>>a.max()#所有元素的值4>>>a.min()#所有元素的最小值2>>>a.clip(3,4)#小于3的元素替换为3,大于4的元素替换为4array([3,3,4])>>>a.compress(a>2)#返回大于2的元素组成的数组array([3,4])>>>a.tolist()#返回python的list[3,2,4]>>>a.var()#计算方差(元素与均值之差的平方的均值)0.66666666666666663>>>a.std()#计算标准差(方差的算术平方根)0.81649658092772603>>>a.ptp()#返回数组的值和最小值之差2>>>a.argmin()#返回最小值在扁平数组中的索引1>>>a.argmax()#返回值在扁平数组中的索引2>>>np.where(a==2)#返回所有值为2的元素的索引(array([1]),)>>>np.diff(a)#返回相邻元素的差array([-1,2])>>>np.log(a)#返回对数数组array([1.09861229,0.69314718,1.38629436])>>>np.exp(a)#返回指数数组array([20.08553692,7.3890561,54.59815003])>>>np.sqrt(a)#返回开方数组array([1.73205081,1.41421356,2.])>>>np.msort(a)#数组排序array([2,3,4])>>>a=np.array([1,4,7])>>>b=np.array([8,5,2])>>>np.maximum(a,b)#返回多个数组中对应位置元素的值数组array([8,5,7])>>>np.minimum(a,b)#返回多个数组中对应位置元素的最小值数组array([1,4,2])>>>np.true_divide(a,b)#对整数实现真正的数学除法运算array([0.125,0.8,3.5])

二、矩阵对象

matrix是矩阵对象,继承自ndarray类型,因此含有ndarray的所有数据属性和方法。不过,当你把矩阵对象当数组操作时,需要注意以下几点:

matrix对象总是二维的,即使是展平(ravel函数)操作或是成员选择,返回值也是二维的

matrix对象和ndarray对象混合的运算总是返回matrix对象

1、创建矩阵

matrix对象可以使用一个Matlab风格的字符串来创建(以空格分隔列,以分号分隔行的字符串),也可以用数组来创建。

>>>np.mat('147;258;369')matrix([[1,4,7],[2,5,8],[3,6,9]])>>>np.mat(np.arange(1,10).reshape(3,3))matrix([[1,2,3],[4,5,6],[7,8,9]])

2、矩阵的特有属性

矩阵有几个特有的属性使得计算更加容易,这些属性有:

>>>m=np.mat(np.arange(1,10).reshape(3,3))>>>mmatrix([[1,2,3],[4,5,6],[7,8,9]])>>>m.T#返回自身的转置matrix([[1,4,7],[2,5,8],[3,6,9]])>>>m.H#返回自身的共轭转置matrix([[1,4,7],[2,5,8],[3,6,9]])>>>m.I#返回自身的逆矩阵matrix([[-4.50359963e+15,9.00719925e+15,-4.50359963e+15],[9.00719925e+15,-1.80143985e+16,9.00719925e+15],[-4.50359963e+15,9.00719925e+15,-4.50359963e+15]])>>>m.A#返回自身数据的二维数组的一个视图array([[1,2,3],[4,5,6],[7,8,9]])

3、矩阵乘法

对ndarray对象而言,星号是按元素相乘,dot()函数则当作矩阵相乘。对于matrix对象来说,星号和dot()函数都是矩阵相乘。特别的,对于一维数组,dot()函数实现的是向量点乘(结果是标量),但星号实现的却不是差乘。

>>>a=np.array([1,2,3])>>>b=np.array([4,5,6])>>>a*b#一维数组,元素相乘array([4,10,18])>>>np.dot(a,b)#一维数组,元素相乘再求和32>>>a=np.array([[1,2],[3,4]])>>>b=np.array([[5,6],[7,8]])>>>a*b#多维数组,元素相乘array([[5,12],[21,32]])>>>np.dot(a,b)#多维数组,实现的是矩阵相乘array([[19,22],[43,50]])>>>m=np.mat(a)>>>n=np.mat(b)>>>np.dot(m,n)#矩阵相乘matrix([[19,22],[43,50]])>>>m*n#矩阵相乘matrix([[19,22],[43,50]])

三、线性代数模块

numpy.linalg 是numpy的线性代数模块,可以用来解决逆矩阵、特征值、线性方程组以及行列式等问题。

1、计算逆矩阵

尽管matrix对象本身有逆矩阵的属性,但用numpy.linalg模块求解矩阵的逆,也是非常简单的。

m=np.mat('012;103;4-38')mi=np.linalg.inv(m)#mi即为m的逆矩阵。何以证明?m*mi#矩阵与其逆矩阵相乘,结果为单位矩阵matrix([[1.,0.,0.],[0.,1.,0.],[0.,0.,1.]])

2、计算行列式

如何计算行列式,我早已经不记得了,但手工计算行列式的痛苦,我依然记忆犹新。现在好了,你在手机上都可以用numpy轻松搞定(前提是你的手机上安装了python + numpy)。

m=np.mat('012;103;4-38')np.linalg.det(m)#什么?这就成了?2.0

3、计算特征值和特征向量

m=np.mat('012;103;4-38')>>>np.linalg.eigvals(m)#计算特征值array([7.96850246,-0.48548592,0.51698346])>>>np.linalg.eig(m)#返回特征值及其对应特征向量的元组(array([7.96850246,-0.48548592,0.51698346]),matrix([[0.26955165,0.90772191,-0.74373492],[0.36874217,0.24316331,-0.65468206],[0.88959042,-0.34192476,0.13509171]]))

4、求解线性方程组

有线性方程组如下:

x-2y+z=02y-8z=8-4x+5y+9z=-9

求解过程如下:

>>>A=np.mat('1-21;02-8;-459')>>>b=np.array([0,8,-9])>>>np.linalg.solve(A,b)array([29.,16.,3.])#x=29,y=16,z=3

python学习网,大量的免费python视频教程,欢迎在线学习!

相关推荐:

1、Python数学建模三剑客之Matplotlib

本文链接地址:https://www.jiuchutong.com/zhishi/303266.html 转载请保留说明!

上一篇:Elementor怎样在一行内添加2个按钮(element excel)

下一篇:电脑学习网首发cdnfly-cdn系统通过改hosts破解授权方法,随时可能失效,抓紧下载-电脑学习网破解(网上学电脑的软件)

  • 在京东慧采平台怎么入驻(在京东慧采平台采购的单位)

    在京东慧采平台怎么入驻(在京东慧采平台采购的单位)

  • qq为什么加不了好友(qq为什么加不了好友了qq也搜不到)

    qq为什么加不了好友(qq为什么加不了好友了qq也搜不到)

  • 实名认证有效期是什么意思(实名认证有效期多久)

    实名认证有效期是什么意思(实名认证有效期多久)

  • 小米10充电速度(小米10充电速度怎么样)

    小米10充电速度(小米10充电速度怎么样)

  • 华为mate20pro录音功能在哪里(华为mate20pro录音文件怎么拷到电脑上)

    华为mate20pro录音功能在哪里(华为mate20pro录音文件怎么拷到电脑上)

  • 手机防窥原理(手机防窥原理图)

    手机防窥原理(手机防窥原理图)

  • 目录文件所存放的信息是(目录文件所存放的信息时)

    目录文件所存放的信息是(目录文件所存放的信息时)

  • 变频器按启动没反应(变频器启动没有输出电压)

    变频器按启动没反应(变频器启动没有输出电压)

  • x4760k相当于i几(x4760k最高配什么显卡)

    x4760k相当于i几(x4760k最高配什么显卡)

  • ssd硬盘为什么要开ahci模式(ssd硬盘为什么要开卡)

    ssd硬盘为什么要开ahci模式(ssd硬盘为什么要开卡)

  • 苹果11pro max怎么关闭多个任务(苹果11promax怎么开热点)

    苹果11pro max怎么关闭多个任务(苹果11promax怎么开热点)

  • 字体下沉在哪里设置(字体下沉如何设置)

    字体下沉在哪里设置(字体下沉如何设置)

  • 2016051红米什么机型(红米手机新款是)

    2016051红米什么机型(红米手机新款是)

  • 平板怎么插无线网卡(平板怎么加入手机无线)

    平板怎么插无线网卡(平板怎么加入手机无线)

  • 腾讯会议没有声音怎么回事(腾讯会议没有声音了怎么办)

    腾讯会议没有声音怎么回事(腾讯会议没有声音了怎么办)

  • word导航怎么打开(word导航怎么出来)

    word导航怎么打开(word导航怎么出来)

  • 恢复初始状态是啥意思(恢复初始化状态)

    恢复初始状态是啥意思(恢复初始化状态)

  • 存储介质一般是什么介质(存储介质一般是电介质还是磁介质)

    存储介质一般是什么介质(存储介质一般是电介质还是磁介质)

  • 蓝牙耳机声音小怎么调(蓝牙耳机声音小是什么原因)

    蓝牙耳机声音小怎么调(蓝牙耳机声音小是什么原因)

  • 虎牙怎么投屏电视(虎牙投屏电视没声音怎么解决)

    虎牙怎么投屏电视(虎牙投屏电视没声音怎么解决)

  • 拼多多怎么退单(拼多多怎么退款不想买了)

    拼多多怎么退单(拼多多怎么退款不想买了)

  • oppoa9x和a9有什么区别(oppoa9x跟a9手机一样吗)

    oppoa9x和a9有什么区别(oppoa9x跟a9手机一样吗)

  • soul被封了怎么解除(soul封禁的账号怎么解封)

    soul被封了怎么解除(soul封禁的账号怎么解封)

  • 公交乘车码怎么弄(公交乘车码怎么扣费)

    公交乘车码怎么弄(公交乘车码怎么扣费)

  • 详解vue 路由跳转四种方式 (带参数)[转载](vue路由跳转的三种方法)

    详解vue 路由跳转四种方式 (带参数)[转载](vue路由跳转的三种方法)

  • 火车票报销抵扣税率
  • 文件柜材质
  • 出口业务运费可以抵扣吗
  • 增值税发票9个点和13个点区别
  • 卫生清理费计入什么科目
  • 个体工商户年度报告表怎么报
  • 居民企业股权转让所得
  • 会计集中核算模式
  • 供应商给的折扣比发票少怎么做账
  • 制造费用可以抵进项税吗
  • 购买财务软件账务处理规定
  • 小规模转一般纳税人生效时间
  • 增值税普通发票和普通发票的区别怎么交税
  • 怎么做销售二手车
  • 公司自建房产的房产证
  • 学校的房子归哪里管
  • 同一个单位,应收应付都有,怎么调账
  • 个人交汽车购置税流程
  • 收到专项拨款属于什么科目
  • 冲减材料采购成本
  • 先征后退房产税的会计处理?
  • 各类预算的内容及其相互关系
  • 上月预提的费用怎么记账
  • php怎么把数组变成字符串
  • 适用于初学者的美得理电子琴
  • 笔记本cpu排行天梯
  • Win10 21H1 Build 19043.1200(KB5005101)预览版更新了哪些内容(附更新日志)
  • php中md5函数
  • phpforeach遍历二维数组
  • 计算企业应纳税所得额时,可以扣除的税种
  • php控制器是用来做什么的
  • 企业所得税法定税率是多少
  • trainer 平替
  • php禁用system用什么绕过
  • tree命令常用参数
  • 加收税收滞纳金属于行政处罚吗
  • vue中动态添加表格
  • 工程公司收到工程款会计分录
  • 准予扣除业务招标的情形
  • 个税申报报的是已离职的员工员工投诉
  • 银行收付款凭证是什么
  • 建筑公司遇到的问题
  • dedecms怎么更换模板
  • 企业会计准则和企业会计制度的区别
  • 砂石可以开专票吗
  • 个人所得税10月份申报期
  • 销售折扣与折让在财务报表哪里
  • 非货币性资产交换以公允价值为基础进行计量
  • 车辆抵押贷款怎么办理
  • 税务局多扣的税可以退吗
  • 出口退税没有进项就退不了税吗?
  • 私人借款条怎么写合法
  • 增值税专用发票怎么开
  • 我是小规模纳税人,客户都想获得13%的专票
  • 质量赔款能冲减收入么
  • 反结账钱会转回去吗
  • 递延所得税资产账务处理
  • 商品流通企业的含义与特点
  • sqlserver存储过程if语句
  • win7系统ie浏览器怎么卸载重装
  • gdiwindow是什么
  • 默认终端地址
  • 无线网络连接上但上不了网
  • win1020h2正式版
  • win10怎么取消禁用
  • win7系统电脑开不了机怎么办
  • jquery禁止点击事件
  • 照片墙安装教程
  • rsa加解密过程是什么
  • g8a1
  • 调用perl脚本
  • 隐藏磁盘空间
  • css中渐变
  • android 多个权限合并 弹窗
  • jquery 表单
  • 如果我中了双色球
  • 外购已税小汽车用于连续生产小汽车为啥可以抵扣
  • 入职培训结束寄语
  • 交完车船税后地税局都给什么
  • 姓名章加不加印字
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设