位置: IT常识 - 正文

【深度学习】Pytorch实现CIFAR10图像分类任务测试集准确率达95%

编辑:rootadmin
【深度学习】Pytorch实现CIFAR10图像分类任务测试集准确率达95% 文章目录前言CIFAR10简介Backbone选择训练+测试训练环境及超参设置完整代码部分测试结果完整工程文件Reference前言

推荐整理分享【深度学习】Pytorch实现CIFAR10图像分类任务测试集准确率达95%,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

分享一下本人去年入门深度学习时,在CIFAR10数据集上做的图像分类任务,使用了多个主流的backbone网络,希望可以为同样想入门深度学习的同志们,提供一个方便上手、容易理解的参考教程。

CIFAR10简介

CIFAR-10数据集是图像分类领域经典的数据集,由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理得到,一共包含10个类别的 RGB彩色图片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck ),图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和 10000 张测试图片。 CIFAR-10 的图片样例如图所示   Pytorch中提供了如下命令可以直接将CIFAR10数据集下载到本地:

import torchvisiondataset = torchvision.datasets.CIFAR10(root, train=True, download=True, transform)root:数据集加载到本地的路径train=True:True表示加载训练集,False加载测试集download=True:True表示加载数据集到root,若数据集已经存在,则不会再加载transform:数据增强

  这里分享一个加载CIFAR10数据集的完整代码:

# 设置数据增强print('==> Preparing data..')transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])# 加载CIFAR10数据集trainset = torchvision.datasets.CIFAR10( root=opt.data, train=True, download=True, transform=transform_train)trainloader = torch.utils.data.DataLoader( trainset, batch_size=opt.batch_size, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10( root=opt.data, train=False, download=True, transform=transform_test)testloader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False, num_workers=2)Backbone选择

本文主要尝试了以下几个主流的backbone网络,并在CIFAR10上实现了图像分类任务:

LetNetAlexNetVGGGoogLeNet(InceptionNet)ResNetDenseNetResNeXtSENetMobileNetv2-v3ShuffleNetv2EfficientNetB0Darknet53CSPDarknet53【深度学习】Pytorch实现CIFAR10图像分类任务测试集准确率达95%

  这里放上测试结果最好的ResNet模块的构建代码,其他代码放到最后完整工程backbone文件夹中:

"""pytorch实现ResNet50、ResNet101和ResNet152:"""import torchimport torch.nn as nnimport torchvisionimport torch.nn.functional as F# conv1 7 x 7 64 stride=2def Conv1(channel_in, channel_out, stride=2): return nn.Sequential( nn.Conv2d( channel_in, channel_out, kernel_size=7, stride=stride, padding=3, bias=False ), nn.BatchNorm2d(channel_out), # 会改变输入数据的值 # 节省反复申请与释放内存的空间与时间 # 只是将原来的地址传递,效率更好 nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=stride, padding=1) )# 构建ResNet18-34的网络基础模块class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out# 构建ResNet50-101-152的网络基础模块class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() # 构建 1x1, 3x3, 1x1的核心卷积块 self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) # 采用1x1的kernel,构建shout cut # 注意这里除了第一个bottleblock之外,都需要下采样,所以步长要设置为stride=2 self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out# 搭建ResNet模板块class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) # 逐层搭建ResNet self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) # 参数初始化 # for m in self.modules(): # if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # elif isinstance(m, nn.BatchNorm2d): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) # layers = [ ] 是一个列表 # 通过下面的for循环遍历配置列表,可以得到一个由 卷积操作、池化操作等 组成的一个列表layers # return nn.Sequential(*layers),即通过nn.Sequential函数将列表通过非关键字参数的形式传入(列表layers前有一个星号) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return outdef ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2])def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3])def ResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3])def ResNet101(): return ResNet(Bottleneck, [3, 4, 23, 3])def ResNet152(): return ResNet(Bottleneck, [3, 8, 36, 3])# 测试# if __name__ == '__main__':# model = ResNet50()# print(model)## input = torch.randn(1, 3, 32, 32)# out = model(input)# print(out.shape)训练+测试训练环境及超参设置

本文的训练环境和超参数设置如下:

1块1080 Ti GPUepoch为100batch-size为128优化器:SGD学习率:余弦退火有序调整学习率

  主要步骤如下:

加载数据集

将数据集加载到本地按batch-size加载到dataLoader设置相关参数

指定GPU训练相关参数断点续训模型保存参数设置优化器设置学习率循环每个epoch

开启训练开启测试学习率调整数据可视化打印结果完整代码'''Train CIFAR10 with PyTorch.'''import torchvision.transforms as transformsimport timeimport torchimport torchvisionimport torch.nn as nnimport torch.optim as optimimport torch.backends.cudnn as cudnnfrom torch.utils.data import DataLoaderimport matplotlib.pyplot as pltimport osimport argparse# 导入模型from backbones.ResNet import ResNet18# 指定GPUos.environ['CUDA_VISIBLE_DEVICES'] = '1'# 用于计算GPU运行时间def time_sync(): # pytorch-accurate time if torch.cuda.is_available(): torch.cuda.synchronize() return time.time()# Trainingdef train(epoch): model.train() train_loss = 0 correct = 0 total = 0 train_acc = 0 # 开始迭代每个batch中的数据 for batch_idx, (inputs, targets) in enumerate(trainloader): # inputs:[b,3,32,32], targets:[b] # train_outputs:[b,10] inputs, targets = inputs.to(device), targets.to(device) # print(inputs.shape) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() # 计算损失 train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() # 计算准确率 train_acc = correct / total # 每训练100个batch打印一次训练集的loss和准确率 if (batch_idx + 1) % 100 == 0: print('[INFO] Epoch-{}-Batch-{}: Train: Loss-{:.4f}, Accuracy-{:.4f}'.format(epoch + 1, batch_idx + 1, loss.item(), train_acc)) # 计算每个epoch内训练集的acc total_train_acc.append(train_acc)# Testingdef test(epoch, ckpt): global best_acc model.eval() test_loss = 0 correct = 0 total = 0 test_acc = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() test_acc = correct / total print( '[INFO] Epoch-{}-Test Accurancy: {:.3f}'.format(epoch + 1, test_acc), '\n') total_test_acc.append(test_acc) # 保存权重文件 acc = 100. * correct / total if acc > best_acc: print('Saving..') state = { 'net': model.state_dict(), 'acc': acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, ckpt) best_acc = accif __name__ == '__main__': # 设置超参 parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--batch_size', type=int, default=128) parser.add_argument('--data', type=str, default='cifar10') parser.add_argument('--T_max', type=int, default=100) parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--checkpoint', type=str, default='checkpoint/ResNet18-CIFAR10.pth') opt = parser.parse_args() # 设置相关参数 device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu' best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # 设置数据增强 print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # 加载CIFAR10数据集 trainset = torchvision.datasets.CIFAR10( root=opt.data, train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader( trainset, batch_size=opt.batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10( root=opt.data, train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False, num_workers=2) # print(trainloader.dataset.shape) # 加载模型 print('==> Building model..') model = ResNet18().to(device) # DP训练 if device == 'cuda': model = torch.nn.DataParallel(model) cudnn.benchmark = True # 加载之前训练的参数 if opt.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load(opt.checkpoint) model.load_state_dict(checkpoint['net']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] # 设置损失函数与优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9, weight_decay=5e-4) # 余弦退火有序调整学习率 scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.T_max) # ReduceLROnPlateau(自适应调整学习率) # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10) # 记录training和testing的acc total_test_acc = [] total_train_acc = [] # 记录训练时间 tic = time_sync() # 开始训练 for epoch in range(opt.epochs): train(epoch) test(epoch, opt.checkpoint) # 动态调整学习率 scheduler.step() # ReduceLROnPlateau(自适应调整学习率) # scheduler.step(loss_val) # 数据可视化 plt.figure() plt.plot(range(opt.epochs), total_train_acc, label='Train Accurancy') plt.plot(range(opt.epochs), total_test_acc, label='Test Accurancy') plt.xlabel('Epoch') plt.ylabel('Accurancy') plt.title('ResNet18-CIFAR10-Accurancy') plt.legend() plt.savefig('output/ResNet18-CIFAR10-Accurancy.jpg') # 自动保存plot出来的图片 plt.show() # 输出best_acc print(f'Best Acc: {best_acc * 100}%') toc = time_sync() # 计算本次运行时间 t = (toc - tic) / 3600 print(f'Training Done. ({t:.3f}s)')部分测试结果BackboneBest AccMobileNetv293.37%VGG1693.80%DenseNet12194.55%GoogLeNet95.02%ResNeXt29_32×4d95.18%ResNet5095.20%SENet1895.22%ResNet1895.23%完整工程文件

Pytorch实现CIFAR10图像分类任务测试集准确率达95%

Reference

CIFAR-10 数据集

深度学习入门基础教程(二) CNN做CIFAR10数据集图像分类 pytorch版代码

Pytorch CIFAR10 图像分类篇 汇总

pytorch-cifar:使用PyTorch在CIFAR10上为95.47%

本文链接地址:https://www.jiuchutong.com/zhishi/300727.html 转载请保留说明!

上一篇:vue中组件间通信的6种方式(vue之间的组件通信)

下一篇:自注意力(Self-Attention)与Multi-Head Attention机制详解(自注意力机制是什么)

  • 进口货物增值税纳税人是谁
  • 本月累计专项扣款怎么算
  • 小规模纳税人固定资产可以一次扣除吗
  • 公司成立之初做哪些
  • 弃置费用的现值p/f
  • 预计销售收入增长是什么意思
  • 库存现金限额的概念
  • 增值税都有哪些科目
  • 建造期间不可抗力因素入成本么
  • 抵账房产财务入账
  • 同一客户应收应付可以相互抵消吗
  • 定额发票已经取得怎么办
  • 以前年度亏损本季度盈利所得税申报
  • 股权转让的违约条款
  • 开票的时候确认收入吗
  • 用人单位有残疾补贴吗
  • 企业汇算清缴后税务局会不会查
  • 业务推广费税务处理
  • 取得的国债利息收入可以抵扣吗
  • 公司账户转私账
  • win11系统的电脑中拷贝到U盘中的文件没有了怎么解决
  • 联想thinkpad安装win7方法
  • 民营非盈利企业好申请吗
  • 长期借款利息如何做账
  • win10永久激活2021
  • 然后重装系统win7
  • thinkphp limit
  • 哪些资产类科目增加记贷方
  • 已收到发票未认证已付款怎么做分录
  • 经营性租赁与融资性租赁
  • 企业的工资薪金等现金支出只能通过什么办理
  • 劳务资质办理需要什么条件
  • 上月抵扣的发票怎么开
  • 电脑硬盘数据恢复一般需要收费多少钱
  • 公司房产税如何征收税率
  • nginx隐藏后缀
  • 部署文档
  • java 调用go
  • 业务实际发生没得取得发票怎么做账
  • spring 异常
  • 无形资产入账价值包括资本化支出吗
  • php模板引擎有哪些
  • mysql_escape_string()函数用法分析
  • 自行建造厂房如何缴税
  • 人工智能大模型上市公司
  • 收残疾人就业保险合法吗
  • phpcms模板制作教程
  • 帝国cms 开启动态
  • 产品检测费计入成本吗
  • 一般纳税人给小规模开普票的税率
  • 财政借钱给预算单位的会计处理
  • 事故赔偿给谁
  • 外贸公司是不是什么都做的?
  • 建造厂房流程
  • 预付账款属于哪一类账户
  • 股权关系怎么描述
  • 工程结算的会计分录怎么做
  • 资产负债率怎么调整到50%以下
  • 国家医疗保障机构
  • Centos7 下Mysql5.7.19安装教程详解
  • 阿里云ecs centos sysctl
  • win8系统没有无线网络连接
  • linux常用命令修改
  • win10光驱无法识别
  • Windows任务计划程序服务
  • mac 活动监视器在哪里
  • Linux中QQ软件的安装和配置
  • vnc里面的窗口显示不完全
  • 如何在mac系统和win10之间转换
  • win7系统无法安装ie8
  • win10各个版本的桌面
  • ExtJS4 组件化编程,动态加载,面向对象,Direct
  • jquery3.2.1
  • 批处理文件的拷贝怎么写
  • js的匿名函数
  • jQuery Validation PlugIn的使用方法详解
  • javascript 进阶篇2 CSS XML学习
  • python去除文件中的空格
  • 你家预收租金到哪里去了
  • 郑州房管局办事大厅预约
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设