位置: IT常识 - 正文

Pytorch实现MLP(基于PyTorch实现)(pytorch m1)

编辑:rootadmin
Pytorch实现MLP(基于PyTorch实现) 文章目录前言一、导入相关库二、加载Cora数据集三、定义MLP网络3.1 定义MLP层3.1.1 定义参数 WWW 和 bbb3.1.2 定义传播函数3.1.3 MLP层3.2 定义MLP网络四、定义模型五、模型训练六、模型验证七、结果完整代码前言

推荐整理分享Pytorch实现MLP(基于PyTorch实现)(pytorch m1),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch maml,pytorch mkldnn,mpi pytorch,pytorch mlp,mpi pytorch,pytorch mlp,mpi pytorch,pytorch maml,内容如对您有帮助,希望把文章链接给更多的朋友!

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

🚨 我的项目环境:

平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.11.0PyG版本:2.1.0

💥 项目专栏:【图神经网络代码实战目录】

本文我们将使用PyTorch来简易实现一个MLP网络,不使用PyG库,让新手可以理解如何PyTorch来搭建一个简易的图网络实例demo。

一、导入相关库

本项目是采用自己实现的MLP,并没有使用 PyG 库,原因是为了帮助新手朋友们能够对MLP的原理有个更深刻的理解,如果熟悉之后可以尝试使用PyG库直接调用 MLP 这个图层即可。

import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch_geometric.utils import scatterfrom torch_geometric.datasets import Planetoidimport torch_geometric.nn as pyg_nn二、加载Cora数据集

本文使用的数据集是比较经典的Cora数据集,它是一个根据科学论文之间相互引用关系而构建的Graph数据集合,论文分为7类,共2708篇。

Genetic_AlgorithmsNeural_NetworksProbabilistic_MethodsReinforcement_LearningRule_LearningTheory

这个数据集是一个用于图节点分类的任务,数据集中只有一张图,这张图中含有2708个节点,10556条边,每个节点的特征维度为1433。

# 1.加载Cora数据集dataset = Planetoid(root='./data/Cora', name='Cora')三、定义MLP网络3.1 定义MLP层

这里我们就不重点介绍MLP网络了,相信大家能够掌握基本原理,本文我们使用的是PyTorch定义网络层。

Pytorch实现MLP(基于PyTorch实现)(pytorch m1)

对于MLP的常用参数:

in_channels:每个样本的输入维度,就是每个节点的特征维度out_channels:经过注意力机制后映射成的新的维度,就是经过GAT后每个节点的维度长度bias:训练一个偏置b

我们在实现时也是考虑这几个常见参数,对于PyG的内置MLP层的参数可能有点复杂,它可以传入一个列表进行多层特征映射,这里为了简单就是实现一个最基本的单层MLP

对于MLP的传播公式为: H′=HW+bH'=HW+bH′=HW+b

上式子中的 HHH 代表每个层的输入特征,也就是每个节点的特征矩阵,如果是第一层,则 H=XH_0=XH0​=X,对于 WWW 代表每个 MLP 层的可学习参数,bbb 代表偏置参数。

所以我们的任务无非就是获取这几个变量,然后进行传播计算即可

3.1.1 定义参数 WWW 和 bbb

这里为了方便实现,直接利用了 Linear() 函数,如果可以的话可以利用最原始的方法使用 w = nn.Parameter(torch.randn(in_channels, out_channels)) 这种方式来定义参数 WWW

# 线性层self.linear = pyg_nn.dense.linear.Linear(in_channels, out_channels, weight_initializer='glorot', , bias=False)# 偏置if bias: self.bias = nn.Parameter(torch.Tensor(out_channels, 1)) self.bias = pyg_nn.inits.glorot(self.bias)else: self.register_parameter('bias', None)3.1.2 定义传播函数

对于MLP来说,就是一个简单的特征映射,实现一个简单的矩阵乘法而已,所以实现起来较为容易,直接调用定义好的线性层即可,最终加上偏置。

def forward(self, x):# 1.特征映射out = self.linear(x)# 2.添加偏置if self.bias != None: out += self.biasreturn out3.1.3 MLP层

接下来就可以定义MLP层了,该层实现了1个函数,分别是forward()

forward():这个函数定义模型的传播过程,也就是上面公式的 HWHWHW,如果设置了偏置在加上偏置返回即可# 2.定义MLP层class MLP(nn.Module): def __init__(self, in_channels, out_channels, bias=True): super(MLP, self).__init__() self.in_channels = in_channels # 输入图节点的特征数 self.out_channels = out_channels # 输出图节点的特征数 # 线性层 self.linear = pyg_nn.dense.linear.Linear(in_channels, out_channels, weight_initializer='glorot', bias=False) # 偏置 if bias: self.bias = nn.Parameter(torch.Tensor(out_channels, 1)) self.bias = pyg_nn.inits.glorot(self.bias) else: self.register_parameter('bias', None) def forward(self, x): # 1.特征映射 out = self.linear(x) # 2.添加偏置 if self.bias != None: out += self.bias return out

对于我们实现这个网络的实现效率上来讲比PyG框架内置的 MLP 层稍差一点,因为我们是按照公式来一步一步利用矩阵计算得到,没有对矩阵计算以及算法进行优化,不然初学者可能看不太懂,不利于理解MLP公式的传播过程,有能力的小伙伴可以看下官方源码学习一下。

3.2 定义MLP网络

上面我们已经实现好了 MLP 的网络层,之后就可以调用这个层来搭建 MLP 网络。

# 3.定义MLP网络class Model(nn.Module): def __init__(self, num_node_features, num_classes): super(Model, self).__init__() self.lin_1 = MLP(num_node_features, 16) self.lin_2 = MLP(16, num_classes) def forward(self, data): x = data.x x = self.lin_1(x) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.lin_2(x) return F.log_softmax(x, dim=1)

上面网络我们定义了两个 MLP 层,第一层的参数的输入维度就是初始每个节点的特征维度,输出维度是16。

第二个层的输入维度为16,输出维度为分类个数,因为我们需要对每个节点进行分类,最终加上softmax操作。

四、定义模型

下面就是定义了一些模型需要的参数,像学习率、迭代次数这些超参数,然后是模型的定义以及优化器及损失函数的定义,和pytorch定义网络是一样的。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 10 # 学习轮数lr = 0.003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 3.定义模型model = Model(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数五、模型训练

模型训练部分也是和pytorch定义网络一样,因为都是需要经过前向传播、反向传播这些过程,对于损失、精度这些指标可以自己添加。

# 训练模式model.train()for epoch in range(epochs): optimizer.zero_grad() pred = model(data) loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失 correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目 acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度 loss.backward() optimizer.step() if epoch % 20 == 0: print("【EPOCH: 】%s" % str(epoch + 1)) print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')六、模型验证

下面就是模型验证阶段,在训练时我们是只使用了训练集,测试的时候我们使用的是测试集,注意这和传统网络测试不太一样,在图像分类一些经典任务中,我们是把数据集分成了两份,分别是训练集、测试集,但是在Cora这个数据集中并没有这样,它区分训练集还是测试集使用的是掩码机制,就是定义了一个和节点长度相同纬度的数组,该数组的每个位置为True或者False,标记着是否使用该节点的数据进行训练。

# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('Test Accuracy: {:.4f}'.format(acc_test), 'Test Loss: {:.4f}'.format(loss_test))七、结果【EPOCH: 】1训练损失为:1.9460 训练精度为:0.2071【EPOCH: 】21训练损失为:1.8583 训练精度为:0.2714【EPOCH: 】41训练损失为:1.7751 训练精度为:0.3643【EPOCH: 】61训练损失为:1.7049 训练精度为:0.4357【EPOCH: 】81训练损失为:1.5710 训练精度为:0.5929【EPOCH: 】101训练损失为:1.4686 训练精度为:0.6214【EPOCH: 】121训练损失为:1.3101 训练精度为:0.7286【EPOCH: 】141训练损失为:1.2317 训练精度为:0.7143【EPOCH: 】161训练损失为:1.2142 训练精度为:0.7571【EPOCH: 】181训练损失为:1.0434 训练精度为:0.8214【Finished Training!】>>>Train Accuracy: 0.9929 Train Loss: 0.8560>>>Test Accuracy: 0.3910 Test Loss: 1.7350训练集测试集Accuracy0.99290.3910Loss0.85601.7350完整代码import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch_geometric.utils import scatterfrom torch_geometric.datasets import Planetoidimport torch_geometric.nn as pyg_nn# 1.加载Cora数据集dataset = Planetoid(root='../data/Cora', name='Cora')# 2.定义MLP层class MLP(nn.Module): def __init__(self, in_channels, out_channels, bias=True): super(MLP, self).__init__() self.in_channels = in_channels # 输入图节点的特征数 self.out_channels = out_channels # 输出图节点的特征数 # 线性层 self.linear = pyg_nn.dense.linear.Linear(in_channels, out_channels, weight_initializer='glorot', bias=False) # 偏置 if bias: self.bias = nn.Parameter(torch.Tensor(out_channels, 1)) self.bias = pyg_nn.inits.glorot(self.bias) else: self.register_parameter('bias', None) def forward(self, x): # 1.特征映射 out = self.linear(x) # 2.添加偏置 if self.bias != None: out += self.bias return out# 3.定义MLP网络class Model(nn.Module): def __init__(self, num_node_features, num_classes): super(Model, self).__init__() self.lin_1 = MLP(num_node_features, 16) self.lin_2 = MLP(16, num_classes) def forward(self, data): x = data.x x = self.lin_1(x) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.lin_2(x) return F.log_softmax(x, dim=1)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 200 # 学习轮数lr = 0.0003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 4.定义模型model = Model(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数# 训练模式model.train()for epoch in range(epochs): optimizer.zero_grad() pred = model(data) loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失 correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目 acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度 loss.backward() optimizer.step() if epoch % 20 == 0: print("【EPOCH: 】%s" % str(epoch + 1)) print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('Test Accuracy: {:.4f}'.format(acc_test), 'Test Loss: {:.4f}'.format(loss_test))
本文链接地址:https://www.jiuchutong.com/zhishi/300652.html 转载请保留说明!

上一篇:【ChatGPT】中国支付清算协会倡议支付行业从业人员谨慎使用ChatGPT(ChatGPT中国电话不能注册)

下一篇:若依框架前端Vue项目分析实战(若依框架前端发请求)

  • 税收优惠政策落实情况报告
  • 增值税先征后退会计处理
  • 借转股意思
  • 进口海关是指
  • 企业缴纳个人所得税比例
  • 债权投资产生的利息调整包括哪些内容
  • 厂家试驾车和经销商试驾车
  • 固定资产后续支出资本化和费用化
  • 突然收到财付通转出的钱
  • 政府转账捐赠怎么做分录
  • 外贸企业采购货物会计分录
  • 公司承揽员工租房个税如何入账?
  • 社保补助扶持给个人的钱是否需要缴纳个人所得税呢?
  • 房屋租赁合同样本书
  • 修缮发票要注明什么
  • 价内税和价外税区别
  • 成本票和专票区别
  • 电子发票一定要入账吗
  • 普通发票要纳税吗
  • 补缴地价款是什么意思
  • 公司集体活动的目的与意义
  • 补发工资补缴公积金一直没到账
  • 小规模企业增值税账务处理
  • 附加税退款分录
  • 改造工程完工会计分录
  • 公司餐饮费怎么做账
  • mac 怎么操作
  • 补贴收入什么时候到账
  • 已认证进项税发票可抵扣么
  • find.exe应用程序错误
  • 员工宿舍中介费计入什么科目
  • 从上布法罗荒野地区的惠特克顶小道向东看,阿肯色州奥沙克国家森林 (© Jens Lambert Photography/Getty Images Plus)
  • 以固定资产对外投资影响现金流量吗
  • ICCV, ECCV, CVPR,IEEE的关系
  • php模糊查询txt文本
  • python del语法
  • 采购和销售都做的叫什么
  • 收到借款时 会计科目怎么做
  • 小规模纳税人增值税税率
  • 支付兼职工资账务处理
  • 申报水利基金的流程
  • ps怎么移动某个图案
  • 汇票收入会计分录
  • mongodb备份策略
  • 停工期间工资支付标准
  • 工会经费绩效
  • 主营业务成本的借贷方向
  • 信用卡的还款方式怎么查
  • 累计盈余定义
  • 残保金提取是什么意思
  • 信用减值损失和公允价值变动的区别
  • 建筑业简易计税预交
  • 普通发票做账需要价税分离吗
  • 未付货款尾款会计分录
  • 高速过路费发票图片
  • 建筑行业跨期收益怎么算
  • 待抵扣进项税额和待认证进项税额的区别
  • 预缴税款附加税享受优惠政策吗
  • 申报工资总额除以在职人员人数
  • sql注入是干嘛的
  • ubuntu20 server
  • linux如何修改gid
  • haozipsvc.exe是什么
  • linux0.12内核代码多少行
  • 使用iso镜像文件
  • vsftpd教程
  • cocos2dx游戏案例
  • nodejs的应用场景和优缺点
  • css滑动门技术的步骤
  • python中的单下划线和双下划线
  • android contextmenu
  • unity3d开发之对象池
  • javascript的dom
  • 工具类的作用
  • js中overlay
  • 工会的会费收入是什么意思
  • 软件和集成电路企业税收优惠
  • 怎么注册用户名短的淘宝账号
  • 停车定额费发票还能用吗
  • 我国国家宪法日是每年的十二月几日
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设