位置: IT常识 - 正文

Python实现朴素贝叶斯分类器(用python编写素数)

编辑:rootadmin
Python实现朴素贝叶斯分类器 朴素贝叶斯分类器文章目录朴素贝叶斯分类器一、贝叶斯分类器是什么?贝叶斯判定准则朴素贝叶斯分类器举个栗子二、相关代码1.数据处理2.生成朴素贝叶斯表(字典)关于如何判断属性的连续或离散性根据朴素贝叶斯表计算预测标签总结一、贝叶斯分类器是什么?

推荐整理分享Python实现朴素贝叶斯分类器(用python编写素数),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:python purple,python素数,用python编写素数,python怎么素数,python求素数算法,python purple,python求素数算法,python purple,内容如对您有帮助,希望把文章链接给更多的朋友!

贝叶斯分类器是以贝叶斯决策论为基础的一类分类器。和频率决策论不同,贝叶斯决策论使用后验概率来计算将某个数据data分类为某一类c的风险概率。对分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。

贝叶斯判定准则

假设对于数据集D,有N种可能的类别标记,即Y={c1,c2...cn,}Y=\{c_{1},c_{2}...c_{n},\}Y={c1​,c2​...cn​,},λij\lambda_{ij}λij​是将一个真实标记为cjc_{j}cj​的样本误分类为cic_{i}ci​的损失,基于后验概率P(ci∣x)P(c_{i}|x)P(ci​∣x)可获得将样本x分类为cic_{i}ci​所产生的期望损失,即在样本x上的“条件概率”。R(ci∣x)=∑j=iNλijP(cj∣x)R(c_{i}|x)=\sum^{N}_{j=i}{\lambda_{ij}P(c_{j}|x)}R(ci​∣x)=j=i∑N​λij​P(cj​∣x) 我们的任务就是寻找一个判定标准h:X→Yh:X\rightarrow Yh:X→Y以最小化总体风险。 R(h)=Ex[R(h(x)∣x)]R(h)=E_{x}[R(h(x)|x)]R(h)=Ex​[R(h(x)∣x)] 对于每个样本x,若h能以最小化条件风险R(h(x)|x),则总体风险R(h)也将被最小化。这就产生了贝叶斯判定准则(Bayes decision rule):为最小化总体风险,只需在每个样本上选择那个能使条件风险R(c|x)最小的类别标记,即h∗(x)=argminc∈YR(c∣x)h^{*}(x)=arg\quad min_{c\in Y}{R(c|x)}h∗(x)=argminc∈Y​R(c∣x)此时,h∗h^{*}h∗称为贝叶斯最优分类器,与之对应的总体风险R(h*)称为在贝叶斯风险。 具体来说,若目标是最小化分类风险,那么 λij={ifi=j1otherwise\lambda_{ij}=\begin{cases}0&if\quad i=j\\1&otherwise\end{cases}λij​={01​ifi=jotherwise​ 此时条件风险R(c∣x)=1−P(c∣x)R(c|x)=1-P(c|x)R(c∣x)=1−P(c∣x)于是,最小化分类错误率的贝叶斯最优分类器为h∗(x)=argmaxc∈YP(c∣x)(1.1)h^{*}(x)=arg\quad max_{c\in Y}P(c|x)\quad(1.1)h∗(x)=argmaxc∈Y​P(c∣x)(1.1) ,即对每个样本x,选择能使后验概率P(c∣x)P(c|x)P(c∣x)最大的类别标记。基于贝叶斯定理,P(c∣x)P(c|x)P(c∣x)可写为P(c∣x)=P(c)P(x∣c)P(x)(1.2)P(c|x)=\dfrac{P(c)P(x|c)}{P(x)}\quad(1.2)P(c∣x)=P(x)P(c)P(x∣c)​(1.2),其中,P(c)P(c)P(c)是类“先验(prior)”概率;P(x∣c)P(x|c)P(x∣c)是样本x相对于类别标记c的条件概率。

朴素贝叶斯分类器

不难发现,基于贝叶斯公式来估计后验概率P(c∣x)P(c|x)P(c∣x)的主要难度在于类条件概率P(x∣c)P(x|c)P(x∣c)是所有属性的联合概率,难以从有限的训练集上进行直接计算。为了避开这个坑,朴素贝叶斯分类器的做法是,假设所有属性都互相独立。那么,基于属性条件独立假设,式(1.2)可重写为 P(c∣x)=P(c)P(x)∏i=1dP(xi∣c)(1.3)P(c|x)=\dfrac{P(c)}{P(x)}\prod^{d}_{i=1}{P(x_{i}|c)}\quad(1.3)P(c∣x)=P(x)P(c)​i=1∏d​P(xi​∣c)(1.3) 其中ddd为属性数目,xix_{i}xi​为x\mathbf{x}x在第iii个属性上的取值。 由于对于所有类别来说P(x)P(x)P(x)相同,因此基于式(1.1)的贝叶斯判定准则有hnb(x)=argmaxc∈YP(c)∏i=1dP(xi∣c)h_{nb}(x)=argmax_{c\in Y}P(c)\prod^{d}_{i=1}P(x_{i}|c)hnb​(x)=argmaxc∈Y​P(c)i=1∏d​P(xi​∣c)。 显然,朴素贝叶斯分类器的训练过程就是基于训练集D来估计先验概率P(c)P(c)P(c),并为每个属性估计条件概率P(xi∣c)P(x_{i}|c)P(xi​∣c)。令DcD_{c}Dc​表示训练集D种第ccc类样本组成的集合,若有充足的独立同分布样本,则可容易地估计出类先验概率P(c)=∣Dc∣∣D∣P(c)=\dfrac{|D_{c}|}{|D|}P(c)=∣D∣∣Dc​∣​。 对于离散属性而言,令Dc,xiD_{c,x_{i}}Dc,xi​​表示DcD_{c}Dc​中在第iii个属性上取值为xix_{i}xi​的样本组成的集合,则条件概率P(xi∣c)P(x_{i}|c)P(xi​∣c)可估计为P(xi∣c)=∣Dc,xi∣∣Dc∣P(x_{i}|c)=\dfrac{|D_{c,x_{i}}|}{|D_{c}|}P(xi​∣c)=∣Dc​∣∣Dc,xi​​∣​。 对于连续属性可考虑概率密度函数,假定p(xi∣c) N(μc,i,σc,i2)p(x_{i}|c)~\mathcal{N}(\mu_{c,i},\sigma^{2}_{c,i})p(xi​∣c) N(μc,i​,σc,i2​),其中μc,i\mu_{c,i}μc,i​和σc,i2\sigma^{2}_{c,i}σc,i2​分别是第ccc类样本在第iii个属性上取值的均值和方差,则有p(xi∣c)=12πσc,iexp(−(xi−μc,i)22σc,i2)p(x_{i}|c)=\dfrac{1}{\sqrt{2\pi }\sigma_{c,i}}exp(-\dfrac{(x_{i}-\mu_{c,i})^{2}}{2\sigma^{2}_{c,i}})p(xi​∣c)=2π​σc,i​1​exp(−2σc,i2​(xi​−μc,i​)2​)

举个栗子Python实现朴素贝叶斯分类器(用python编写素数)

如上图所示的西瓜数据集,对测试样例编号1进行分类。对于先验概率P(c)P(c)P(c),有P(好瓜=是)=817P(好瓜=是)=\dfrac{8}{17}P(好瓜=是)=178​P(好瓜=否)=917P(好瓜=否)=\dfrac{9}{17}P(好瓜=否)=179​ 然后为每个属性估计条件概率P(xi∣c)P(x_{i}|c)P(xi​∣c): P青绿∣是=P(色泽=青绿∣好瓜=是)=38P_{青绿|是}=P(色泽=青绿|好瓜=是)=\dfrac{3}{8}P青绿∣是​=P(色泽=青绿∣好瓜=是)=83​ P蜷缩∣是=P(根蒂=蜷缩∣好瓜=是)=58P_{蜷缩|是}=P(根蒂=蜷缩|好瓜=是)=\dfrac{5}{8}P蜷缩∣是​=P(根蒂=蜷缩∣好瓜=是)=85​… p密度:0.697∣是=p(密度=0.697∣好瓜=是)=12π∗0.129exp(−(0.697−0.574)22∗0.1292)p_{密度:0.697|是}=p(密度=0.697|好瓜=是)=\dfrac{1}{\sqrt{2\pi}*0.129}exp(-\dfrac{(0.697-0.574)^{2}}{2*0.129^{2}})p密度:0.697∣是​=p(密度=0.697∣好瓜=是)=2π​∗0.1291​exp(−2∗0.1292(0.697−0.574)2​) 其余属性条件概率略 最后,P(好瓜=是)≈0.063P(好瓜=是)\approx 0.063P(好瓜=是)≈0.063 P(好瓜=否)≈6.80∗1−5P(好瓜=否)\approx 6.80*10^{-5}P(好瓜=否)≈6.80∗10−5 由于0.063>6.80∗1−50.063>6.80*10^{-5}0.063>6.80∗10−5因此将样例1判定为“好瓜”。

二、相关代码1.数据处理

该数据集是我通过西瓜书上的西瓜数据集随机生成的10000条数据。需要的评论留言。

代码如下(示例):

import numpy as npimport pandas as pddata=pd.read_csv("DataOrDocu/NewWatermelon2.csv",index_col=0)attributes=data.columnspath="DataOrDocu/PosterProbDict.npy"feature=data[:,:-1]label=data[:,-1]featureTrain,featureTest,labelTrain,labelTest=train_test_split(feature,label,train_size=0.7,random_state=10)labelTrain=np.reshape(labelTrain,(labelTrain.shape[0],1))labelTest=np.reshape(labelTest,(labelTest.shape[0],1))dataTrain=np.concatenate((featureTrain,labelTrain),axis=1)dataTrain=pd.DataFrame(dataTrain,columns=attributes,index=None)dataTest=np.concatenate((featureTest,labelTest),axis=1)dataTest=pd.DataFrame(dataTest,columns=attributes,index=None)2.生成朴素贝叶斯表(字典)

逻辑很简单,即根据式(1.3),先计算《好瓜=是|否》的先验概率,即P(好瓜=是)P(好瓜=是)P(好瓜=是)和P(好瓜=否)P(好瓜=否)P(好瓜=否),并以字典形式返回。然后计算各种条件概率比如P(色泽=青绿∣好瓜=是)P(色泽=青绿|好瓜=是)P(色泽=青绿∣好瓜=是)等等,如果是离散属性,那么保存P(a=ai∣好瓜=是or否)P(a=a_{i}|好瓜=是or否)P(a=ai​∣好瓜=是or否)等一系列条件概率;如果是连续属性,那么保存p好瓜,属性ap_{好瓜,属性a}p好瓜,属性a​的均值和方差。最后,将生成的字典保存成npy文件,方便后续使用。

关于如何判断属性的连续或离散性

此外,有一个问题其中有一个函数,用于判断某个属性是离散属性还是连续属性,我考虑了2种方案,但实际上并不都是完美的逻辑,只是针对具体的数据集具有逻辑的相对完备性。一是判断数据是否为字符类型,一般字符类型将其判断为离散属性,其他判断为连续属性,但很容易在其他数据集上发现例外;二是计算某属性的所有数据集中包含的值的所有种类,如果种类数量<一定的范围,那么,我即认定为其为离散值,大于该范围的,认定其为连续值。但当遇到稀疏数据时,此类办法也会经常失效。

具体代码如下:

import numpy as npdef PosteriorProbDivided(data,attributes,label,path): priorProba={} length=data.shape[0] labelKinds=KindsGet(data,label) #获取标签的所有类别 posterProbTable={} try: for i in labelKinds: dataTemp=data.loc[data[label]==i] tempLength=dataTemp.shape[0] tempPrior=tempLength/length priorProba.update({i:tempPrior}) tempAttr = {} # 用于保存所有属性的条件概率 for j in attributes: if IfDivideAttr(data,j): tempPosterProb=DivCondiProba(data,j,length) tempAttr.update({j:tempPosterProb}) #将该属性的条件概率保存 else: averageVar=ContiCondiProba(data,j) #如果该属性是连续值,那么将该属性的平均值和方差求出,并保存 tempAttr.update({j:averageVar}) posterProbTable.update({i:tempAttr}) try: np.save(path,posterProbTable) except FileExistsError as error: print(error) return priorProba except IndexError as error: print(error)def IfDivideAttr(data,attribute): #第一种判断属性离散还是连续的函数 values=np.unique(data[attribute]).shape[0] #获取某一属性的值的种类 length=data.shape[0] if values!=0: if values<=length/10: #如果某一属性的取值数量小于等于总数据量的十分之一,即判定其为离散值 return True else: return Falsedef IfDivideAttr2(data,attribute): #第二种判断属性离散还是连续的函数 return not isinstance(data[attribute],float)def KindsGet(data,attribute): #用于将离散属性的所有值返回 if IfDivideAttr(data,attribute): values=np.unique(np.array(data[attribute])) return values return Nonedef DivCondiProba(data,attribute,length): #计算某一离散属性的条件概率 tempAttrValues = KindsGet(data, attribute) tempPosterProb = {} # 用于保存某一属性的后验概率 for k in tempAttrValues: tempAttrPoster = data.loc[data[attribute] == k].shape[0] / length # 计算出当某属性a的值为k时,其在标签c上的条件概率P(k|c),并将其压进列表 tempPosterProb.update({k: tempAttrPoster}) return tempPosterProbdef ContiCondiProba(data,attribute): #计算某一连续属性的平均值和方差 contiValue=data[attribute] contiValue=np.array(contiValue) average=np.average(contiValue) variance=np.var(contiValue) return average,variance根据朴素贝叶斯表计算预测标签

针对某个数据的每一个属性对应的值,如果是离散属性,那么就从表中获取,如果是离散属性,那么就根据表中的均值和方差计算条件概率。但是区别于式(1.3),在程序中我对连乘做了一个取对数,防止指数爆炸(方正就是防止差距过大)。然后一个判断正确率的函数,单纯计算预测数据中的正确比例。

def PosteriorFind(data,posterProbTabel,priorProba): #用于计算某单个数据的最后标签 posterValues=[] #用于保存每一个标签的后验概率 bayesProba=0 for label in posterProbTabel: for attribute in posterProbTabel[label]: # attrValue=list(attribute.keys())[0] #取出字典键值对中的健 if IfDivideAttr2(data,attribute): tempValue=np.log(posterProbTabel[label][attribute][data[attribute]]) bayesProba+=tempValue else: averageVar=posterProbTabel[label][attribute] xi=data[attribute] average,variance=averageVar[0],averageVar[1] tempValue=1/(np.square(2*pi)*variance)*np.exp(-(xi-average)**2/2*variance**2) tempValue=np.log(tempValue) bayesProba+=tempValue labelKey=label #取出label的key labelPrior=priorProba[labelKey] bayesProba+=np.log(labelPrior) #将该循环内的标签c所对应的先验概率加入其中 posterValues.append(bayesProba) bayesProba=0 posterDict=zip(posterValues,list(posterProbTabel.keys())) posterDict=dict(posterDict) bestValue=np.max(posterValues) bestLabel=posterDict[bestValue] return bestLabeldef AccCal(data,label,PosterProbaTabel,priorProba): length=data.shape[0] acc=0 for i in range(data.shape[0]): labelPre=PosteriorFind(data.loc[i],PosterProbaTabel,priorProba) if labelPre==data[label][i]: acc+=1 ratio=acc/length return ratio总结

使用随机生成的10000条数据,按照0.7训练集,0.3测试集的比例。最后的正确率大概是百分之四十几 之后又使用了一下鸢尾花的数据集 结果如下正确率是百分之三十一(可以说是很辣鸡了 最后附上sklearn的高斯贝叶斯和决策树跑鸢尾花的正确率 要不怎么说人家是专业的呢(doge

本文链接地址:https://www.jiuchutong.com/zhishi/300623.html 转载请保留说明!

上一篇:YOLOv5|YOLOv7|YOLOv8改各种IoU损失函数:YOLOv8涨点Trick,改进添加SIoU损失函数、EIoU损失函数、GIoU损失函数、α-IoU损失函数

下一篇:Copilot 初体验(pilot coat)

  • oppoa7x屏幕多少英寸(oppoa7x的屏幕多大尺寸)

    oppoa7x屏幕多少英寸(oppoa7x的屏幕多大尺寸)

  • 和家亲怎么连接wifi(和家亲怎么连接手机的步骤)

    和家亲怎么连接wifi(和家亲怎么连接手机的步骤)

  • 微信怎么设置消息提示音(微信怎么设置消息已读)

    微信怎么设置消息提示音(微信怎么设置消息已读)

  • 微信交易限制怎么回事(微信交易限制怎么查被限制几天)

    微信交易限制怎么回事(微信交易限制怎么查被限制几天)

  • 在qq里怎么看黑名单里的人(怎么看qq里面的黑名单)

    在qq里怎么看黑名单里的人(怎么看qq里面的黑名单)

  • miui11的主题叫什么(小米11u主题)

    miui11的主题叫什么(小米11u主题)

  • vega56相当于什么显卡(vega56相当于什么n卡)

    vega56相当于什么显卡(vega56相当于什么n卡)

  • oppohd模式是什么意思(oppohd模式有什么用)

    oppohd模式是什么意思(oppohd模式有什么用)

  • 快手个人主页在哪(快手个人主页在哪里找)

    快手个人主页在哪(快手个人主页在哪里找)

  • 为什么电脑不能下载西瓜视频(为什么电脑不能连接手机热点)

    为什么电脑不能下载西瓜视频(为什么电脑不能连接手机热点)

  • 光驱不读盘的修复方法(光驱不读盘了怎么办?)

    光驱不读盘的修复方法(光驱不读盘了怎么办?)

  • radeonvega8相当于什么显卡(amd radeon vega 8 graphics相当于)

    radeonvega8相当于什么显卡(amd radeon vega 8 graphics相当于)

  • word行间距设置(word行间距设置为25磅)

    word行间距设置(word行间距设置为25磅)

  • 相机专业模式s是什么意思(相机专业模式是什么档)

    相机专业模式s是什么意思(相机专业模式是什么档)

  • 预售不可以加购物车吗(预售可以下单吗)

    预售不可以加购物车吗(预售可以下单吗)

  • 搜狗搜索候选关闭(搜狗候选词怎么设置)

    搜狗搜索候选关闭(搜狗候选词怎么设置)

  • 华为mate30如何截屏(华为Mate30如何截长屏)

    华为mate30如何截屏(华为Mate30如何截长屏)

  • ppt基本维恩图在哪个位置(word基本维恩图)

    ppt基本维恩图在哪个位置(word基本维恩图)

  • office2010无法注册字体(office2010无法注册字体1907)

    office2010无法注册字体(office2010无法注册字体1907)

  • mt712ch/a是什么版(MT712CHA是什么版本)

    mt712ch/a是什么版(MT712CHA是什么版本)

  • moby是什么牌子(moz是什么品牌)

    moby是什么牌子(moz是什么品牌)

  • 抖音集音符不能送好友吗(抖音音符不能自动转换)

    抖音集音符不能送好友吗(抖音音符不能自动转换)

  • 华为nova5pro和nova5区别(华为nova5pro和nova5ipro有什么区别)

    华为nova5pro和nova5区别(华为nova5pro和nova5ipro有什么区别)

  • 如何修复百度新闻无法更新(让百度恢复原样)

    如何修复百度新闻无法更新(让百度恢复原样)

  • 抖音怎么开商品橱柜(抖音怎么开商品链接)

    抖音怎么开商品橱柜(抖音怎么开商品链接)

  • Ubuntu20.04安装OpenCV(ubuntu20.04安装opencv3.4)

    Ubuntu20.04安装OpenCV(ubuntu20.04安装opencv3.4)

  • 税务局退税多久到账
  • 企业所得税怎么算出来
  • 国际避税地是什么
  • 企业运输没有发票
  • 基本户借款 一般户可以还吗
  • 培训咨询企业的发展前景
  • 费用化支出期末结转
  • 应交税费和所得税费用会计分录
  • 临时营业执照有效期多久
  • 发票冲红重开摘要如何写合适?
  • 房地产企业收到预收款如何纳税
  • 销售业务中的贴息如何开票?
  • 股东入资印花税怎么计算
  • 四点帮你避开虚开发票
  • 哪些行为触犯了刑法
  • 代缴水电费的差额是什么
  • 纳税义务发生时间和纳税期限的关系
  • 股东以个人名义签订租赁合同
  • 服务业发票进项税怎么做凭证?
  • 固定资产报废账目
  • 日常服务app
  • 银行手续费可以汇总记账吗
  • 苹果Mac电脑怎么锁屏
  • 发生以前年度损益调整
  • 失控发票是什么
  • 常见的dump抓取方法
  • windows10轻松使用是什么
  • win11系统开机密码怎么修改
  • 还款本息和本金哪个划算
  • 城镇土地使用税纳税义务发生时间
  • 企业合并进行过程中发生的各项直接相关费用
  • web无法运行
  • 公司的财产保险包括哪些
  • php获取本机ip地址
  • php如何定义二维数组
  • 针对多用户实现什么功能
  • xclip命令怎么用
  • 抄税在报税前还是报税后
  • 小规模纳税人无进项票怎么办
  • 残保金计税基数是什么
  • 增值税普通发票几个点
  • 员工出差预借差旅费入的借贷
  • 预收账款挂多久确认收入
  • 没有原始凭证可以记账吗
  • sql2008使用教程
  • 实缴资本需要存放多久
  • 发票收款人和复核人在哪儿政
  • 所得税汇算调增后怎么改财务报表
  • 销项100万进项80万交多少税
  • etc的充值发票可以报账吗
  • 跨年的进项税额转出要补交税款吗
  • 未取得发票能计入在建工程吗
  • 进项税额减免部分在重点税源表中怎么填
  • 收取加盟费的条件
  • 房地产企业如何结转成本
  • 资金股东占股比例
  • 减值准备包括哪几个方面
  • 股权投资与债权投资包括什么
  • 新办企业必须经过什么核准登记
  • 商品流通企业如何控成本
  • mysql怎么修改列的类型
  • mysql数据库定时备份脚本
  • 删除默认操作系统选项
  • 同一个局域网中,可以有两台dhcp服务器吗?为什么?
  • centos7脚本
  • ubuntu安装多个cuda
  • winxp任务栏消失
  • rundll32.exe是病毒吗
  • pavfires.exe - pavfires是什么进程 有什么用
  • win10系统安装搜狗输入法很慢
  • 有没有免费的win10
  • Linux CentOS系统下tomcat配置ssl教程
  • 请找到以下
  • unity ui
  • unity中ngui
  • 山东省2023年医改方案
  • 垠坤集团是属于国企吗
  • 小规模企业开通税务几天生效啊
  • 船舶吨税的税目
  • 公务卡信用等级1级
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设