位置: IT常识 - 正文

【Pytorch】torch. matmul()(pytorch .pt)

编辑:rootadmin
【Pytorch】torch. matmul() 目录简介torch.matmul()语法作用举例情形1: 一维 * 一维情形2: 二维 * 二维情形3: 一维 * 二维情形4: 二维 * 一维情形5:两个参数至少为一维且至少一个参数为 N 维(其中 N > 2),则返回**批处理矩阵乘法**第一个参数为N维,第二个参数为一维时第一个参数为一维,第二个参数为二维时高维 * 高维时参考结语

推荐整理分享【Pytorch】torch. matmul()(pytorch .pt),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch torchscript,pytorch torchscript,pytorch.optim,pytorch torch.load,pytorchtools,pytorch with torch.nograd,pytorch with torch.nograd,pytorch with torch.nograd,内容如对您有帮助,希望把文章链接给更多的朋友!

简介

Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~   ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研 学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!   唯有努力💪   本文仅记录自己感兴趣的内容

torch.matmul()语法

torch.matmul(input, other, *, out=None) → Tensor

作用

两个张量的矩阵乘积

行为取决于张量的维度,如下所示:

如果两个张量都是一维的,则返回点积(标量)。如果两个参数都是二维的,则返回矩阵-矩阵乘积。如果第一个参数是一维的,第二个参数是二维的,为了矩阵乘法的目的,在它的维数前面加上一个 1。在矩阵相乘之后,前置维度被移除。如果第一个参数是二维的,第二个参数是一维的,则返回矩阵向量积。如果两个参数至少为一维且至少一个参数为 N 维(其中 N > 2),则返回批处理矩阵乘法如果第一个参数是一维的,则将 1 添加到其维度,以便批量矩阵相乘并在之后删除。如果第二个参数是一维的,则将 1 附加到其维度以用于批量矩阵倍数并在之后删除非矩阵(即批次)维度是广播的(因此必须是可广播的)例如,如果输入是(j×1×n×n)(j \times 1 \times n \times n)(j×1×n×n) 张量另一个是 (k×n×n)(k \times n \times n)(k×n×n)张量,out 将是一个 (j×k×n×n)(j \times k \times n \times n)(j×k×n×n) 张量

请注意,广播逻辑在确定输入是否可广播时仅查看批处理维度,而不是矩阵维度

例如

如果输入是 (j×1×n×m)(j \times 1 \times n \times m)(j×1×n×m) 张量另一个是 (k×m×p)(k \times m \times p)(k×m×p) 张量即使最后两个维度(即矩阵维度)不同,这些输入对于广播也是有效的out 将是一个 (j×k×n×p)(j \times k \times n \times p)(j×k×n×p) 张量

该运算符支持 TensorFloat32。

在某些 ROCm 设备上,当使用 float16 输入时,此模块将使用不同的向后精度

举例情形1: 一维 * 一维

如果两个张量都是一维的,则返回点积(标量)

tensor1 = torch.Tensor([1,2,3])tensor2 =torch.Tensor([4,5,6])ans = torch.matmul(tensor1, tensor2)print('tensor1 : ', tensor1)print('tensor2 : ', tensor2)print('ans :', ans)print('ans.size :', ans.size())

ans = 1 * 4 + 2 * 5 + 3 * 6 = 32

情形2: 二维 * 二维

如果两个参数都是二维的,则返回矩阵-矩阵乘积 也就是 正常的矩阵乘法 (m * n) * (n * k) = (m * k)

tensor1 = torch.Tensor([[1,2,3],[1,2,3]])tensor2 =torch.Tensor([[4,5],[4,5],[4,5]])ans = torch.matmul(tensor1, tensor2)print('tensor1 : ', tensor1)print('tensor2 : ', tensor2)print('ans :', ans)print('ans.size :', ans.size())

情形3: 一维 * 二维

如果第一个参数是一维的,第二个参数是二维的,为了矩阵乘法的目的,在它的维数前面加上一个 1 在矩阵相乘之后,前置维度被移除

tensor1 = torch.Tensor([1,2,3]) # 注意这里是一维tensor2 =torch.Tensor([[4,5],[4,5],[4,5]])ans = torch.matmul(tensor1, tensor2)print('tensor1 : ', tensor1)print('tensor2 : ', tensor2)print('ans :', ans)print('ans.size :', ans.size())

tensor1 = torch.Tensor([1,2,3]) 修改为 tensor1 = torch.Tensor([[1,2,3]])

发现一个结果是[24., 30.] 一个是[[24., 30.]]

【Pytorch】torch. matmul()(pytorch .pt)

所以,当一维 * 二维时, 开始变成 1 * m(一维的维度),也就是一个二维, 再进行正常的矩阵运算,得到[[24., 30.]], 然后再去掉开始增加的一个维度,得到[24., 30.]

想象为二维 * 二维(前置维度为1),最后结果去掉一个维度即可

情形4: 二维 * 一维

如果第一个参数是二维的,第二个参数是一维的,则返回矩阵向量积

tensor1 =torch.Tensor([[4,5,6],[7,8,9]])tensor2 = torch.Tensor([1,2,3])ans = torch.matmul(tensor1, tensor2)print('tensor1 : ', tensor1)print('tensor2 : ', tensor2)print('ans :', ans)print('ans.size :', ans.size())

理解为:

把第一个二维中,想象为多个行向量第二个一维想象为一个列向量行向量与列向量进行矩阵乘法,得到一个标量再按照行堆叠起来即可

情形5:两个参数至少为一维且至少一个参数为 N 维(其中 N > 2),则返回批处理矩阵乘法第一个参数为N维,第二个参数为一维时tensor1 = torch.randn(10, 3, 4)tensor2 = torch.randn(4)print(torch.matmul(tensor1, tensor2).size())

(4) 先添加一个维度 (4 * 1) 得到(10 * 3 * 4) *( 4 * 1) = (10 * 3 * 1) 再删除最后一个维度(添加的那个) 得到结果(10 * 3)

tensor1 = torch.randn(10,2, 3, 4) #tensor2 = torch.randn(4)print(torch.matmul(tensor1, tensor2).size())

(10 * 2 * 3 * 4) * (4 * 1) = (10 * 2 * 3) 【抵消4,删1】

第一个参数为一维,第二个参数为二维时tensor1 = torch.randn(4)tensor2 = torch.randn(10, 4, 3)print(torch.matmul(tensor1, tensor2).size())

tensor2 中第一个10理解为批次, 10个(4 * 3) (1 * 4)与每个(4 * 3) 相乘得到(1,3),去除1,得到(3) 批次为10,得到(10,3)

tensor1 = torch.randn(4)tensor2 = torch.randn(10,2, 4, 3)print(torch.matmul(tensor1, tensor2).size())

这里批次理解为[10, 2]即可

tensor1 = torch.randn(4)tensor2 = torch.randn(10,4, 2,4,1)print(torch.matmul(tensor1, tensor2).size())

个人理解:当一个参数为一维时,它要去匹配另一个参数的最后两个维度(二维 * 二维)

比如上面的例子就是(1 * 4) 匹配 (4,1), 批次为(10,4,2)

高维 * 高维时

注:这不太好理解 … 感觉就是要找准批次,再进行乘法(靠感觉了 哈哈 离谱)

参考https://pytorch.org/docs/stable/generated/torch.matmul.html#torch.matmul结语

文章仅作为个人学习笔记记录,记录从0到1的一个过程

希望对您有一点点帮助,如有错误欢迎小伙伴指正

本文链接地址:https://www.jiuchutong.com/zhishi/300618.html 转载请保留说明!

上一篇:干货!​如何打造我们自己的“ChatGPT”?| 大佬思辨

下一篇:一文看懂Transformer(详解)(一文看懂华为新品发布会)

  • 专项扣除三险一金为0
  • 劳务费发票是个人开还是公司开
  • 现代服务业加计抵减政策适用范围
  • 辅导期纳税人会计处理
  • 应交税费应交增值税的三级科目有哪些
  • 我国现行资源税的课税范围不包括
  • 养老保险缴纳比例是固定的吗
  • 固定资产不动产抵扣新政策
  • 流动比率与速动比率之差等于现金比率
  • 融资贷款保险费计算公式
  • 代收车船税没有发票能走帐吗
  • 小规模纳税人开了3%的专票还能享受1%
  • 网银年费属于财务费用哪一项
  • 公司开发票就会报税吗?
  • 没有真实业务的票据贴现
  • 物业管理费属于政府购买服务吗
  • 公司承担的个人所得税怎么做分录
  • 企业报税网上申报
  • 一般纳税人申报哪些税种
  • 佳能2900打印机加碳粉教程
  • 折价购入对投资者而言,是为以后多得利息
  • 坏账损失的确定原则
  • win7玩什么游戏流畅
  • 深入浅出stm8
  • zmweb.exe是什么进程
  • mt-mon.exe
  • 竣工结算审计费用在线计算器
  • win11开机后开始菜单没反应
  • 为什么我们认为北京人已经学会使用火
  • 微软回应
  • 前端实战面试题
  • 外省人员收入怎么查
  • 新会计准则对财务工作的影响
  • 支付银行贷款利息现金流量表填哪里
  • 补记以前年度固定资产怎么记账
  • 织梦小说采集
  • centos7源码包安装
  • dedecms插件
  • 电子承兑汇票到期提示付款后多久到账
  • mysql数据查询慢
  • 所得税季报中的营业收入包括营业外收入吗
  • 一般纳税人销售旧货税率
  • 农村信用社可计算利息吗
  • 长期待摊费用好处
  • 企业自有房产的认定标准
  • 企业的营业税金怎么计算
  • 最新成品油消费政策
  • 企业支付给其他单位的奖励款需要纳税调整么
  • 资产减值哪些资产
  • 虚开发票但是没有成本如何做账?
  • 汇算清缴亏损弥补不能自动带出该怎么办
  • 增值税申报销项数据怎么自动带出来
  • 收入红冲够是否红冲成本
  • 分配现金股利的顺序
  • 公司奖励给部门的奖励
  • MySQL ALTER命令使用详解
  • navicat连接教程
  • 添加网络打印机找不到设备
  • 如何查看windows2008修改密码日志
  • 苹果电脑安装win7系统教程
  • mac安装路径选择
  • centos安装位置选择
  • centos锁定屏幕命令
  • centos smb服务
  • centos最小化安装步骤
  • mac os 必装软件
  • ,linux
  • jquery实现手风琴遇到问题
  • jQuery实现别踩白块儿网页版小游戏
  • 疯狂冰淇淋罗德
  • django 实例
  • unity mobile3d
  • js 括号函数
  • androidstudio 教程
  • 手把手教你用python破解wifi
  • 电子税务局查询一般纳税人资格
  • 增值税是否在利润表反映
  • 个人所得税怎么退税
  • 出租场地的税费
  • 全国初中应用物理知识竞赛获奖名单
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设