位置: IT常识 - 正文

yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)(yolov5加入注意力机制后网络后进行剪枝)

编辑:rootadmin
yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)

推荐整理分享yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)(yolov5加入注意力机制后网络后进行剪枝),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5加入注意力机制后网络后进行剪枝,yolov5加入报警功能代码,yolov5加入注意力机制有用吗,yolov5加入报警功能代码,yolov5加入CTR3模块,yolov5加入报警功能代码,yolov5加入注意力机制有用吗,yolov5加入注意力机制,内容如对您有帮助,希望把文章链接给更多的朋友!

 本文所涉及到的yolov5网络为5.0版本,后续有需求会更新6.0版本。

CBAM注意力# class ChannelAttention(nn.Module):# def __init__(self, in_planes, ratio=16):# super(ChannelAttention, self).__init__()# self.avg_pool = nn.AdaptiveAvgPool2d(1)# self.max_pool = nn.AdaptiveMaxPool2d(1)## self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)# self.relu = nn.ReLU()# self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)# # 写法二,亦可使用顺序容器# # self.sharedMLP = nn.Sequential(# # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(),# # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))## self.sigmoid = nn.Sigmoid()## def forward(self, x):# avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))# max_out = self.f2(self.relu(self.f1(self.max_pool(x))))# out = self.sigmoid(avg_out + max_out)# return out### class SpatialAttention(nn.Module):# def __init__(self, kernel_size=7):# super(SpatialAttention, self).__init__()## assert kernel_size in (3, 7), 'kernel size must be 3 or 7'# padding = 3 if kernel_size == 7 else 1## self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)# self.sigmoid = nn.Sigmoid()## def forward(self, x):# avg_out = torch.mean(x, dim=1, keepdim=True)# max_out, _ = torch.max(x, dim=1, keepdim=True)# x = torch.cat([avg_out, max_out], dim=1)# x = self.conv(x)# return self.sigmoid(x)### class CBAMC3(nn.Module):# # CSP Bottleneck with 3 convolutions# def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion# super(CBAMC3, self).__init__()# c_ = int(c2 * e) # hidden channels# self.cv1 = Conv(c1, c_, 1, 1)# self.cv2 = Conv(c1, c_, 1, 1)# self.cv3 = Conv(2 * c_, c2, 1)# self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.channel_attention = ChannelAttention(c2, 16)# self.spatial_attention = SpatialAttention(7)## # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])## def forward(self, x):# out = self.channel_attention(x) * x# print('outchannels:{}'.format(out.shape))# out = self.spatial_attention(out) * out# return outCBAM代码 2022.1.26更新

受大佬指点,指出上述cbam模块不匹配yolov5工程代码,yolov5加入cbam注意力的代码以下述代码为准:(如果用这段代码,yolo.py和yaml文件中相应的CBAMC3也要换成CBAM,下面的SE同理)

class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu = nn.ReLU() self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) # 写法二,亦可使用顺序容器 # self.sharedMLP = nn.Sequential( # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(), # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False)) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.f2(self.relu(self.f1(self.avg_pool(x)))) max_out = self.f2(self.relu(self.f1(self.max_pool(x)))) out = self.sigmoid(avg_out + max_out) return outclass SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv(x) return self.sigmoid(x)class CBAM(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, ratio=16, kernel_size=7): # ch_in, ch_out, number, shortcut, groups, expansion super(CBAM, self).__init__() # c_ = int(c2 * e) # hidden channels # self.cv1 = Conv(c1, c_, 1, 1) # self.cv2 = Conv(c1, c_, 1, 1) # self.cv3 = Conv(2 * c_, c2, 1) # self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) self.channel_attention = ChannelAttention(c1, ratio) self.spatial_attention = SpatialAttention(kernel_size) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): out = self.channel_attention(x) * x # print('outchannels:{}'.format(out.shape)) out = self.spatial_attention(out) * out return out

 1.这里是卷积注意力的代码,我一般喜欢加在common.py的C3模块后面,不需要做改动,傻瓜ctrl+c+v就可以了。

2.在yolo.py里做改动。在parse_model函数里将对应代码用以下代码替换,还是傻瓜ctrl+c+v。

if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR,CBAMC3]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3,CBAMC3]: args.insert(2, n) # number of repeats n = 1

3.在yaml文件里改动。比如你要用s网络,我是这样改的:将骨干网络中的C3模块全部替换为CBAMC3模块(这里需要注意的是,这样改动只能加载少部分预训练权重)。如果不想改动这么大,那么接着往下看。

pytorch中加入注意力机制(CBAM),以yolov5为例_YY_172的博客-CSDN博客_yolov5加注意力

这是首发将CBAM注意力添加到yolov5网络中的博主,我也是看了他的方法,侵删。

backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3,CBAMC3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, CBAMC3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, CBAMC3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, CBAMC3, [1024, False]], # 9 ] SE注意力class SELayer(nn.Module): def __init__(self, c1, r=16): super(SELayer, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // r, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // r, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)2022.1.26SE代码更新 

受同一位大佬指正,上述部分的se代码同样没有匹配yolov5工程代码,将修改后的se代码贴出,se注意力的代码以下述为准:

class SE(nn.Module): def __init__(self, c1, c2, r=16): super(SE, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // r, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // r, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): print(x.size()) b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)

1.这里是SE注意力的代码段,同上一个注意力的加法一样,我喜欢加在C3后面。

2.在yolo.py中做改动。

def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, CoordAtt, SELayer, eca_layer, CBAM]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f]

3.在你要用的yaml文件中做改动。

backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3,C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, C3, [1024, False]], # 9 [-1, 1, SELayer, [1024, 4]] ]

 运行成功后是这样的

 应该能看到那个注意力加在哪里了吧,这就是用上了。

这是我用的另一种添加注意力的方法,这种方法会加载预训练权重,推荐大家使用这种方法。既然推荐大家使用这种方法,那我推荐添加CBAM注意力那种方法目的是啥呢?哈哈哈哈再往下看。

yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)(yolov5加入注意力机制后网络后进行剪枝)

天池竞赛-布匹缺陷检测baseline提升过程-给yolov5模型添加注意力机制_pprp的博客-CSDN博客_yolov5注意力机制

这是我看的将SE注意力添加到 yolov5模型里的博客,我同样也是引用了这位博主的方法,感谢分享,侵删。

 ECA注意力# class eca_layer(nn.Module):# """Constructs a ECA module.# Args:# channel: Number of channels of the input feature map# k_size: Adaptive selection of kernel size# """# def __init__(self, channel, k_size=3):# super(eca_layer, self).__init__()# self.avg_pool = nn.AdaptiveAvgPool2d(1)# self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)# self.sigmoid = nn.Sigmoid()## def forward(self, x):# # feature descriptor on the global spatial information# y = self.avg_pool(x)## # Two different branches of ECA module# y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)## # Multi-scale information fusion# y = self.sigmoid(y)# x=x*y.expand_as(x)## return x * y.expand_as(x)

1.这里是注意力代码片段,放到自己的脚本里把注释取消掉就可以了,添加的位置同上,这里就不说了。 

2.改动yolo.py。看以下代码段。

if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3,eca_layer]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 elif m is eca_layer: channel=args[0] channel=make_divisible(channel*gw,8)if channel != no else channel args=[channel] else: c2 = ch[f]

 3.改动你要用的yaml文件。这里我要解释一下为什么交代了两种添加注意力的方法(第一种:将骨干里的C3全部替换掉;第二种:在骨干最后一层加注意力,做一个输出层)。第二种方法的模型目前还在跑,还没出结果,不过模型的结果也能猜个大概,有稳定的微小提升,detect效果不会提升太多;我在用第一种方法将ECA注意力全部替换掉骨干里的C3时,模型的p、r、map均出现了下降的情况,大概就是一个两个点,但是令人意外的是,他的检测效果很好,能够检测到未作改动前的模型很多检测不到的目标,当然也会比原模型出现更多的误检和漏检情况,手动改阈值后好了很多,因为数据集涉及到公司机密,所以这里就不放出来了,我做的是安全帽的检测,有兴趣的同学可以尝试一下这种添加注意力的方法。

看下其中一张的检测结果。

如果只是求提高模型准确率,推荐第二种方法。

 接下来就是发表在今年CVPR上的注意力了。

CoorAttention# class h_sigmoid(nn.Module):# def __init__(self, inplace=True):# super(h_sigmoid, self).__init__()# self.relu = nn.ReLU6(inplace=inplace)## def forward(self, x):# return self.relu(x + 3) / 6### class h_swish(nn.Module):# def __init__(self, inplace=True):# super(h_swish, self).__init__()# self.sigmoid = h_sigmoid(inplace=inplace)## def forward(self, x):# return x * self.sigmoid(x)# class CoordAtt(nn.Module):# def __init__(self, inp, oup, reduction=32):# super(CoordAtt, self).__init__()# self.pool_h = nn.AdaptiveAvgPool2d((None, 1))# self.pool_w = nn.AdaptiveAvgPool2d((1, None))## mip = max(8, inp // reduction)## self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)# self.bn1 = nn.BatchNorm2d(mip)# self.act = h_swish()## self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)# self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)## def forward(self, x):# identity = x## n, c, h, w = x.size()# x_h = self.pool_h(x)# x_w = self.pool_w(x).permute(0, 1, 3, 2)## y = torch.cat([x_h, x_w], dim=2)# y = self.conv1(y)# y = self.bn1(y)# y = self.act(y)## x_h, x_w = torch.split(y, [h, w], dim=2)# x_w = x_w.permute(0, 1, 3, 2)## a_h = self.conv_h(x_h).sigmoid()# a_w = self.conv_w(x_w).sigmoid()## out = identity * a_w * a_h## return out

 这是代码段,加在common.py的C3模块后面

 这里是改动yolo.py的部分,最后在yaml文件里的改动这里就不说了,前面提供了两种方法供大家使用,大家可以自行选择。

def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR,CBAMC3,CoordAtt]:# c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 # elif m is eca_layer: # channel=args[0] # channel=make_divisible(channel*gw,8)if channel != no else channel # args=[channel] elif m is CoordAtt: inp,oup,re = args[0],args[1],args[2] oup = make_divisible(oup * gw, 8) if oup != no else oup args = [inp,oup,re] else: c2 = ch[f]

后面的ECA和CA注意力添加方法是我对着前两位博主照葫芦画瓢,在我的本地运行多次,就俩字,好用,以后的注意力也可以按照这种方法去添加。

yolov5-6.0版本的注意力添加方法请移步这里

各种注意力的添加方法以及如何work,我都懂一些,如果有需要的朋友可以联系我,赚点生活费。

2022.2.14更:本人已实现使用densenet替换focus、neck中fpn结构改为bi-fpn代码,有需要的小伙伴请私聊,赚点生活费。可用于毕业以及硕士小论文发表的trick。 

 不胜感激,最后祝大家年薪百万。

扯完了。

本文链接地址:https://www.jiuchutong.com/zhishi/300578.html 转载请保留说明!

上一篇:Vue开发环境安装(vue开发环境配置)

下一篇:【年终总结】我的前端之行,回顾2022,展望2023(我的年终总结怎么写)

  • 收购分公司和谁签协议
  • 业务宣传费和广告费的扣除标准
  • 个体工商户年报网上申报入口
  • 事业单位净资产为负数怎么办
  • 分公司税务登记流程视频
  • 利润表的营业成本包括哪些
  • 增值税零申报附加税费情况表没发保存
  • 小规模纳税人购买原材料会计分录
  • 消费税的计税方法
  • 工程按量计价什么意思
  • 自产产品用于销售费用
  • 个人出租房屋应该注意什么
  • 进项和销项不符的税务处理
  • 营改增后还有建筑业发票吗
  • 新公司没业务怎么做账
  • 购买物品的专用会计科目
  • 吊装费用税率
  • 企业所得税汇算交所得税如何做账务处理
  • 私募股权基金税收主要涉及的是什么税收问题
  • 用U盘安装苹果系统
  • 如何下载网页?
  • 中介公司代发工资合法吗
  • 废料销售成本怎么计算
  • 公积金补缴上月算断缴吗
  • 多系统设置
  • 决算报表是财务报表吗
  • linux系统设置中文语言
  • windows10什么时候上市
  • linux tr
  • 股东借款给公司会计分录
  • nvm安装及全局配置node
  • 下岗职工生活费最多发多少个月
  • 什么是冲帐?怎么个冲法?
  • 长期借款汇兑收益怎么算
  • yolov1训练过程
  • 实收资本(或股本)是什么意思
  • 税收滞纳金的最新法律规定
  • 个税申报系统操作指南
  • php读取文件内容的方法和函数
  • rc远程桌面
  • 营业税差额计税
  • 企业所得税应该怎么计算
  • 差旅费取得发票怎么处理
  • javascript前端开发案例教程源码
  • mysql的innodb引擎支持外键
  • mongodb如何查询数据
  • sqlserver解密工具
  • 内账会计成本是什么意思
  • 个体户与公司的差别
  • 资产负债表应收账款期末余额公式
  • 小规模纳税人未开票收入如何申报增值税
  • 个税汇算清缴什么意思?
  • 辅助生产车间的低值易耗品计入
  • 收到商业汇票怎么入账
  • 购置固定资产的预算是财务预算吗
  • 工程公司本月没发工资
  • 单独计价作为固定资产入账的土地为什么不计提折旧
  • 残保金新企业用交吗
  • 2023年职工社保缴费标准一览表
  • bios设置或coms设置完整的说法
  • linux 命令帮助
  • 索尼笔记本电脑怎么进入bios设置
  • freebsd ports安装
  • win7旗舰版32位系统激活
  • win8系统盘瘦身
  • win8平板玩lol
  • win7系统误删文件可以恢复吗
  • javascript怎么学
  • jquery邮箱正则表达式
  • 安卓音游吃音
  • 微信小程序tabbar颜色
  • html5翻页效果
  • sell脚本
  • ug编程代码意思
  • wpf窗口嵌套
  • android 图片视频轮播框架
  • ca证书密码是什么
  • 陕西税务厅
  • 副局长是由局长任命的吗
  • 卖钢材交哪些税
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设