位置: IT常识 - 正文

OpenCV中的图像处理 —— 傅里叶变换+模板匹配(opencv如何显示图片)

编辑:rootadmin
OpenCV中的图像处理 —— 傅里叶变换+模板匹配 OpenCV中的图像处理 —— 傅里叶变换+模板匹配

推荐整理分享OpenCV中的图像处理 —— 傅里叶变换+模板匹配(opencv如何显示图片),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:opencv图形界面,opencv如何显示图片,opencv 图像,opencv的图像处理函数,opencv 图像,opencv 图像,opencv的图像处理函数,opencv的图像处理函数,内容如对您有帮助,希望把文章链接给更多的朋友!

现在也在逐渐深入啦,希望跟大家一起进步越来越强

目录OpenCV中的图像处理 —— 傅里叶变换+模板匹配1. 傅里叶变换1.1 Numpy实现傅里叶变换1.2 OpenCV实现傅里叶变换1.3 DFT的性能优化2. 模板匹配2.1 单对象的模板匹配2.2 多对象的模板匹配1. 傅里叶变换

关于傅里叶变换最重要的两个概念:时域与频域。以时间作为参照来观察动态世界的方法我们称其为时域分析,而频域是什么呢,它是描述信号在频率方面特性时用到的一种坐标系,频域图显示了在一个频率范围内每个给定频带内的信号量。贯穿时域与频域的方法之一就是大名鼎鼎的傅里叶分析,它可以分为傅里叶级数和傅里叶变换,傅里叶变换也就是我们这一部分要说的东西

傅里叶变换是分析线性系统的一个有力工具。 它告诉我们任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。从数学意义上说,傅里叶变换将一个任意的周期函数分解成为无穷个正弦函数的和的形式;从物理效果上看,傅里叶变换实现了将信号从空间域到频率域的转换

在计算机视觉中傅立叶变换用于分析各种滤波器的频率特性,对于图像,使用2D离散傅里叶变换(DFT)查找频域(还有一种称为快速傅立叶变换(FFT)的快速算法)这一段文字是不是不太好理解,因为里面涉及太多比较深奥的东西了,傅里叶变换本身是比较难的一个点,在这里我就不细说了,我们只说说在计算机视觉领域我们是怎么用它的,想要深入了解的同学来看看这篇文章:深入浅出的讲解傅里叶变换(真正的通俗易懂)

对于正弦信号,如果幅度在短时间内变化比较快,则可以说它是高频信号,如果变化缓慢,则为低频信号,我们可以将相同的想法扩展到图像,图像中的振幅在哪里急剧变化?当然是在边缘点或噪声,因此,可以说边缘和噪声是图像中的高频内容

1.1 Numpy实现傅里叶变换

Numpy提供了FFT软件包来查找傅里叶变换,np.fft.fft2()为我们提供了频率转换,它将是一个复杂的数组,它的第一个参数是输入图像(灰度图像),第二个参数是可选的,它决定输出数组的大小。如果它大于输入图像的大小,则在计算FFT之前用零填充输入图像。如果小于输入图像,将裁切输入图像。如果未传递任何参数,则输出数组的大小将与输入的大小相同,但是现在获得的结果它的零频率分量(DC分量)将位于左上角,为了便于分析我们要把它居中,居中处理关系到np.fft.fftshift()函数

import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimg = cv.imread(r'E:\image\test16.png', 0)f = np.fft.fft2(img)fshift = np.fft.fftshift(f)magnitude_spectrum = 20 * np.log(np.abs(fshift))plt.subplot(121), plt.imshow(img, cmap='gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()

我们可以看到幅度谱的中心有更多白色区域,说明图像低频内容更多。找到了幅度谱那我们是不是可以在频域中进行一些操作呢?例如高通滤波和重建图像,实质就是找到逆DFT,我们首先要用尺寸为60*60的矩形窗口遮罩抵消低频信号,然后使用np.fft.ifftshift()应用反向移位,以使DC分量再次出现在左上角。然后使用np.ifft2()函数找到逆FFT,结果同样是一个复数

import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimg = cv.imread(r'E:\image\test15.png', 0)f = np.fft.fft2(img)fshift = np.fft.fftshift(f)magnitude_spectrum = 20 * np.log(np.abs(fshift))rows, cols = img.shapecrow, ccol = rows//2, cols//2fshift[crow - 30:crow + 31, ccol - 30:ccol + 31] = 0f_ishift = np.fft.ifftshift(fshift)img_back = np.fft.ifft2(f_ishift)img_back = np.abs(img_back)plt.subplot(131), plt.imshow(img, cmap='gray'),plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(132), plt.imshow(magnitude_spectrum, cmap='gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.subplot(133), plt.imshow(img_back)plt.title('Result in JET'), plt.xticks([]), plt.yticks([])plt.show()OpenCV中的图像处理 —— 傅里叶变换+模板匹配(opencv如何显示图片)

1.2 OpenCV实现傅里叶变换

OpenCV为此提供了cv.dft()和cv.idft()函数。它返回与前一个相同的结果,但是有两个通道。第一个通道是结果的实部,第二个通道是结果的虚部。输入图像首先应转换为np.float32

import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimg = cv.imread(r'E:\image\test17.png', 0)dft = cv.dft(np.float32(img), flags=cv.DFT_COMPLEX_OUTPUT)dft_shift = np.fft.fftshift(dft)magnitude_spectrum = 20 * np.log(cv.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))plt.subplot(121), plt.imshow(img, cmap='gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()

这一块儿代码有几个难懂的地方,没关系我们来分析一下:第一次看这段代码会有几个疑问,cv.dft()函数的参数怎么传递?cv.magnitude()函数是怎么用的?

cv.dft()函数的作用是对一维或者二维浮点数数组进行正向或反向离散傅里叶变换,其中包括4个参数,第一个即源图像,第二个参数是OutputArray类型的dst,函数调用后返回的运算结果存在这里,它的尺寸和类型取决于第三个参数flags转换标识符,它的默认值为0(参考自:opencv:dft()函数详解)

cv.magnitude()函数用来计算二维矢量的幅值,其中包括3个参数,第一个是InputArray类型的x,表示矢量的浮点型X坐标值,也就是实部,第二个参数是InputArray类型的y,表示矢量的浮点型Y坐标值,也就是虚部,第三个参数是输出的幅值

接下来我们需要做OpenCV中DFT的逆变换,上一节用了高通滤波器HPF,这一部分我们会将低通滤波器LPF应用到图像中

注意:通常,OpenCV函数cv.dft()和cv.idft()比Numpy函数更快,大约快3倍,但是Numpy函数更容易使用

我们把这一部分的代码放在后面,与DFT的性能优化放在一起更容易理解

1.3 DFT的性能优化

对于某些数组尺寸,DFT的计算性能较好,例如当数组大小为2的幂时,速度最快,对于大小为2、3和5的乘积的数组,也可以非常有效地进行处理,关于代码的性能问题,我们可以在找到DFT之前将数组的大小修改为任何最佳大小(通过填充零),对于OpenCV,我们必须手动填充零,但是对于Numpy,指定FFT计算的新大小,它将自动为您填充零

关于寻找最优大小,OpenCV为此提供了一个函数:cv.getOptimalDFTSize()

import cv2import numpy as npfrom matplotlib import pyplot as pltimg = cv2.imread(r'E:\image\test17.png', 0)rows, cols = img.shapeprint(rows, cols)# 计算DFT效率最佳的尺寸nrows = cv2.getOptimalDFTSize(rows)ncols = cv2.getOptimalDFTSize(cols)print(nrows, ncols)nimg = np.zeros((nrows, ncols))nimg[:rows, :cols] = imgimg = nimg# OpenCV计算快速傅里叶变换,输入图像应首先转换为np.float32,然后使用函数cv2.dft()和cv2.idft()。# 返回结果与Numpy相同,但有两个通道。第一个通道为有结果的实部,第二个通道为有结果的虚部。dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)dft_shift = np.fft.fftshift(dft)magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))plt.subplot(121), plt.imshow(img, cmap='gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()rows, cols = img.shapecrow, ccol = rows // 2, cols // 2# 首先创建一个mask,中心正方形为1,其他均为0# 如何删除图像中的高频内容,即我们将LPF应用于图像。它实际上模糊了图像。# 为此首先创建一个在低频时具有高值的掩码,即传递LF内容,在HF区域为0。mask = np.zeros((rows, cols, 2), np.uint8)mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1# 应用掩码Mask和求逆DTFfshift = dft_shift * maskf_ishift = np.fft.ifftshift(fshift)img_back = cv2.idft(f_ishift)img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])plt.subplot(121), plt.imshow(img, cmap='gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(img_back, cmap='gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()

版权

本文链接地址:https://www.jiuchutong.com/zhishi/300297.html 转载请保留说明!

上一篇:第09章_异常处理(异常处理流程为哪几个部分)

下一篇:疑问搞懂,python中文词频统计,让你真能学会(python答疑)

  • 民办非企业所得税优惠政策
  • 合并报表盈余公积等于母公司盈余公积
  • 没有报关单货物违法吗
  • 民营企业的待遇
  • 外商独资企业资本金的使用
  • 平销返利企业所得税处理
  • 车间员工的质量管理制度
  • 储备基金是用来干嘛的
  • 跨年的预付账款如何冲销
  • 装修计入固定资产
  • 递延所得税资产是什么
  • 金税三期的变化
  • 土地增值税纳税地点
  • 手撕发票去年的可以报销吗
  • 免征增值税还要做销项税吗
  • 美国税改“梦想”很丰满,显示很骨感
  • 保障性住房享有怎么取消儿子的名字呀
  • 增值税普通发票和普通发票的区别怎么交税
  • 母子公司之间支付的租赁费可以税前扣除么
  • 资产转让税费哪方承担
  • 四项服务加计扣除政策2023
  • 买卖交什么税
  • mac怎么设置屏幕保护壁纸
  • 住房公积金扣除标准为每月
  • 长期待摊费用挂账原因
  • linux root没有权限
  • 专用发票增量申请流程
  • wlan和蜂窝版的区别
  • PHP:FrenchToJD()的用法_日历函数
  • 其他应收款的审计重点不包括哪些
  • 小企业会计准则2023电子版
  • 公司当月申报的是下个月社保么
  • php使用oci8扩展连接oracle
  • 一个实用的php验证
  • 资产负债表利润表的勾稽关系
  • webpack常用属性
  • 定期定额和核定征收哪个好
  • ai线型工具介绍
  • ChatGPT助力校招----面试问题分享(四)
  • 税控技术服务费280元怎么抵减申报不成功
  • python如何合并字典
  • 以前年度损益调整会计分录
  • php怎么装
  • 银行手续费需要开发票吗
  • 物业合并利润表怎么填
  • sql中聚合函数的用法
  • mysql优化常用的几种方法
  • 无形资产的成本包括增值税吗
  • 收到其他企业投资是属于其他业务收入吗
  • 小微企业增值税起征点是多少
  • 教育费附加免征文件
  • 开服装店如何做销售
  • 员工社保,个税怎么计算
  • sql报错22018
  • Linux安装MySQL5.6.24使用文字说明
  • win8.1 开机进桌面
  • win7系统运行慢,如何提速
  • mac新版系统
  • windows8咋关机
  • win7系统无法开机解决方法
  • win10系统中怎么打开IE浏览器
  • win7系统怎么禁止更新
  • Android 近百个项目的源代码
  • Node.js中的事件循环是什么
  • unity3d spine
  • 手机端apk反编译工具_android反编译工具
  • jquery动态设置div高度
  • unity中滚动条控件详解
  • Android 5.1 API 22 所有sdk文件下载地址
  • javascript例题
  • android音乐播放器源代码
  • 定额发票查询入口在哪里
  • 东莞市国家税务局网上办税大厅
  • 深圳前海自贸区医院是三甲吗
  • 江苏税务网上办税服务厅服务提醒
  • 进口小麦关税税率是多少
  • 云南省电子税务局登录入口
  • 委托贷款的手续费
  • 非居民企业机构场所核定征收
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设