位置: IT常识 - 正文

Mediapipe实战——导出身体节点坐标并用TensorFlow搭建LSTM网络来训练自己的手势检测模型再部署到树莓派4B(mediapipe objectron)

编辑:rootadmin
Mediapipe实战——导出身体节点坐标并用TensorFlow搭建LSTM网络来训练自己的手势检测模型再部署到树莓派4B

推荐整理分享Mediapipe实战——导出身体节点坐标并用TensorFlow搭建LSTM网络来训练自己的手势检测模型再部署到树莓派4B(mediapipe objectron),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:mediapipe hand,mediaped,media pipe,mediapipe详解,mediapipe教程,mediapipe原理,media pipe,media pipe,内容如对您有帮助,希望把文章链接给更多的朋友!

一、前言   在YouTube上看到up主——Nicholas Renotte的相关教程,觉得非常有用。使用他的方法,我训练了能够检测四种手势的模型,在这里和大家分享一下。   附上该up主的视频链接Sign Language Detection using ACTION RECOGNITION with Python | LSTM Deep Learning Model

  视频的代码链接https://github.com/nicknochnack/ActionDetectionforSignLanguage   我的系列文章一:Mediapipe入门——搭建姿态检测模型并实时输出人体关节点3d坐标   我的系列文章二:Mediapipe姿态估计——用坐标计算手指关节弯曲角度并实时标注

我使用的环境 Pycharm2021 mediapipe0.8.9 tensorflow2.3.0 openCV4.5.4 个人认为版本影响不大,可以跟我不一致,但tensorflow最好2.0以上

二、使用mediapipe搭建姿态估计模型并打开摄像头采集坐标数据集   源代码中,up主进行了很好地封装,代码稍长,接下来我只挑重要的部分说一下,完整的代码请看文末(代码中的中文注释是我添加的,英文的是原作者的)。   首先是处理视频流的函数。

def mediapipe_detection(image, model): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # BGR 转 RGB image.flags.writeable = False # Image is no longer writeable results = model.process(image) # 对视频流处理,返回坐标 image.flags.writeable = True # Image is now writeable image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # RGB 转 BGR return image, results

  然后是在人体上渲染节点的函数。

def draw_styled_landmarks(image, results): mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(80,22,10), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(80,44,121), thickness=2, circle_radius=2) ) ...... #剩下还有,不一一放上来了,完整请看文末

  这两个功能比较简单,如果想了解如何用mediapipe搭建姿态检测模型,请看我的系列文章一。   然后是比较重要的提取坐标的函数,将process返回的坐标提取出来,并转换为numpy矩阵。为了训练手势模型,我使用了姿势坐标33个、左右手坐标各21个。原作者还使用了脸部坐标一起训练,个人没这个需求,将相关代码注释了。

def extract_keypoints(results):#姿势坐标33个,np.zeros(33*4)是因为除x,y,z外,还有置信度visibility,以下类似 pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4) #mediapipe面网多达468个节点,这里我不用,注释掉 #face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]).flatten() if results.face_landmarks else np.zeros(468*3) #左手坐标21个 lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21*3) #右手坐标21个 rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21*3) return np.concatenate([pose, lh, rh]) #如果要使用脸部坐标训练,列表更换为[pose, face, lh, rh]Mediapipe实战——导出身体节点坐标并用TensorFlow搭建LSTM网络来训练自己的手势检测模型再部署到树莓派4B(mediapipe objectron)

  33个姿势节点如下所示。   21个手部节点如下所示。

  现在使用os库在同一目录下新建文件夹存放等下要采集的数据集。

DATA_PATH = os.path.join('MP_Data')

  接下来比较重要了。我将训练的四个手势是“666”,“大拇指”、“比心”、“剪刀手”。每个动作将采集30次,每次采集30帧(这些可以改)

actions = np.array(['666', 'thumbs_up', 'finger_heart','scissor_hand'])#你要训练的手势名称,即动作标签label# Thirty videos worth of datano_sequences = 30#采集30次# Videos are going to be 30 frames in lengthsequence_length = 30#30帧#关于这个for循环,会在MP_data文件下建立四个文件夹(对应四个动作),每个文件夹又包含30个子文件夹,#每个子文件夹包含30个.npy文件,都是每次采集坐标信息时保存的for action in actions: for sequence in range(no_sequences): try: os.makedirs(os.path.join(DATA_PATH, action, str(sequence))) except: pass

  然后运行这部分程序开始采集数据集(完整代码请看文末)。采集前都会有提示,原作者做得很好。   就这样慢慢采集,大概几分钟,采集完会自动结束程序。 三、使用Tensorflow搭建LSTM网络进行训练,然后保存模型   有了数据集,开始搭建网络训练。关于长短期记忆网络LSTM,请看官网的介绍

#同样,这里只是部分代码,详细请看文末from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import LSTM, Densemodel = Sequential()#关于input_shape,原作者的网络是(30,1662),1662=33*4 + 468*2 + 21*3 + 21*3,而我不需要面网坐标,故只有258model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30,258)))model.add(LSTM(128, return_sequences=True, activation='relu'))model.add(LSTM(64, return_sequences=False, activation='relu'))model.add(Dense(64, activation='relu'))model.add(Dense(32, activation='relu'))model.add(Dense(actions.shape[0], activation='softmax'))model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])model.fit(X_train, y_train, epochs=2000, callbacks=[tb_callback])model.summary()model.save('action.h5')#要保存的模型名称,保存在当前目录

  tensorflow的使用还是比较简单的,如果看不懂,请看TensorFlow中文官网。训练结果如图。   虽有2000个epochs,但即使是CPU下训练速度也很快。最后在同一目录下得到了我们的权重文件action.h5,接下来就可以实际使用训练好的模型了。 四、使用训练好的模型进行实际检测   看效果图吧,当识别到对应手势,相应标签的框框颜色条会变长,这代表分类到这一手势的概率。同时运行端也会输出此刻检测到手势类别。这部分代码与上文的代码大体类似,请看文末吧。总的来说,手势基本上都能识别正确,响应速度也很快。   最后我将该模型部署到了树莓派上,虽然运行起来有点慢,但还是很成功的。部署的话,就是注意相关库都要安装,然后代码和权重文件拖过去运行就好了,没什么难点。

五、总结   借助该up主的代码,可以简便的训练自己的手势识别模型,准确率也高。不过要注意的是,当使用训练好的模型进行实际检测时,所做动作务必和采集数据集时的动作保持一致。这是因为,代码中使用的mediapipe坐标会随你离摄像头的距离变化而变化。所以同样的手势动作,只要你离摄像头的距离或角度变了,识别准确率就会大大下降,这是我多次实践得出的结论。使用自己的模型时,所做动作务必和采集数据集时的动作保持一致!

六、所有代码   如果你想复现我的模型,你不需要改动任何代码;如果想扩大数据集,请修改no_sequences 和sequence_length;如果想训练别的动作或增加动作数目,请修改actions列表和colors列表(增加或减少动作数目就要修改);想训练面网坐标,增加表情识别,请取消相应注释。如果有其他不懂的,可以在评论区问我。   首先是采集数据集的代码

import cv2import numpy as npimport osimport mediapipe as mpmp_holistic = mp.solutions.holistic # Holistic modelmp_drawing = mp.solutions.drawing_utils # Drawing utilitiesdef mediapipe_detection(image, model): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB image.flags.writeable = False # Image is no longer writeable results = model.process(image) # Make prediction image.flags.writeable = True # Image is now writeable image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR return image, resultsdef draw_styled_landmarks(image, results): """ 要训练脸部坐标就取消注释 # Draw face connections mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS, mp_drawing.DrawingSpec(color=(80,110,10), thickness=1, circle_radius=1), mp_drawing.DrawingSpec(color=(80,256,121), thickness=1, circle_radius=1) ) """ # Draw pose connections mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(80,22,10), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(80,44,121), thickness=2, circle_radius=2) ) # Draw left hand connections mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS, mp_drawing.DrawingSpec(color=(121,22,76), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(121,44,250), thickness=2, circle_radius=2) ) # Draw right hand connections mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS, mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) )def extract_keypoints(results): pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4) #face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]).flatten() if results.face_landmarks else np.zeros(468*3) lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21*3) rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21*3) return np.concatenate([pose, lh, rh])# Path for exported data, numpy arraysDATA_PATH = os.path.join('MP_Data')# Actions that we try to detectactions = np.array(['666', 'thumbs_up', 'finger_heart','scissor_hand'])# Thirty videos worth of datano_sequences = 30# Videos are going to be 30 frames in lengthsequence_length = 30for action in actions: for sequence in range(no_sequences): try: os.makedirs(os.path.join(DATA_PATH, action, str(sequence))) except: passcap = cv2.VideoCapture(0)# Set mediapipe modelwith mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: # NEW LOOP # Loop through actions for action in actions: # Loop through sequences aka videos for sequence in range(no_sequences): # Loop through video length aka sequence length for frame_num in range(sequence_length): # Read feed ret, frame = cap.read() # Make detections image, results = mediapipe_detection(frame, holistic) # print(results) # Draw landmarks draw_styled_landmarks(image, results) # NEW Apply wait logic if frame_num == 0: cv2.putText(image, 'STARTING COLLECTION', (120, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 4, cv2.LINE_AA) cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence), (15, 12), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) # Show to screen cv2.imshow('OpenCV Feed', image) cv2.waitKey(2000) else: cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence), (15, 12), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) # Show to screen cv2.imshow('OpenCV Feed', image) # NEW Export keypoints keypoints = extract_keypoints(results) npy_path = os.path.join(DATA_PATH, action, str(sequence), str(frame_num)) np.save(npy_path, keypoints) # Break gracefully if cv2.waitKey(10) & 0xFF == ord('q'): breakcap.release()cv2.destroyAllWindows()

  使用TensorFlow搭建LSTM网络进行训练

from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import LSTM, Densefrom tensorflow.keras.callbacks import TensorBoardimport numpy as npimport osfrom sklearn.model_selection import train_test_splitfrom tensorflow.keras.utils import to_categoricallog_dir = os.path.join('Logs')tb_callback = TensorBoard(log_dir=log_dir)no_sequences = 30# Videos are going to be 30 frames in lengthsequence_length = 30DATA_PATH = os.path.join('MP_Data')actions = np.array(['666', 'thumbs_up', 'finger_heart','scissor_hand'])label_map = {label:num for num, label in enumerate(actions)}sequences, labels = [], []for action in actions: for sequence in range(no_sequences): window = [] for frame_num in range(sequence_length): res = np.load(os.path.join(DATA_PATH, action, str(sequence), "{}.npy".format(frame_num))) window.append(res) sequences.append(window) labels.append(label_map[action])X = np.array(sequences)y = to_categorical(labels).astype(int)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05)model = Sequential()model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30,258)))model.add(LSTM(128, return_sequences=True, activation='relu'))model.add(LSTM(64, return_sequences=False, activation='relu'))model.add(Dense(64, activation='relu'))model.add(Dense(32, activation='relu'))model.add(Dense(actions.shape[0], activation='softmax'))model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])model.fit(X_train, y_train, epochs=2000, callbacks=[tb_callback])model.summary()model.save('action.h5')

  使用训练好的模型进行实际检测

from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import LSTM, Denseimport cv2import numpy as npimport mediapipe as mpmp_holistic = mp.solutions.holistic # Holistic modelmp_drawing = mp.solutions.drawing_utils # Drawing utilitiessequence = []sentence = []threshold = 0.8actions = np.array(['666', 'thumbs_up', 'finger_heart','scissor_hand'])def mediapipe_detection(image, model): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB image.flags.writeable = False # Image is no longer writeable results = model.process(image) # Make prediction image.flags.writeable = True # Image is now writeable image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR return image, resultsdef draw_styled_landmarks(image, results): # Draw face connections """ mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS, mp_drawing.DrawingSpec(color=(80,110,10), thickness=1, circle_radius=1), mp_drawing.DrawingSpec(color=(80,256,121), thickness=1, circle_radius=1) ) """ # Draw pose connections mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(80,22,10), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(80,44,121), thickness=2, circle_radius=2) ) # Draw left hand connections mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS, mp_drawing.DrawingSpec(color=(121,22,76), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(121,44,250), thickness=2, circle_radius=2) ) # Draw right hand connections mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS, mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=4), mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) )def extract_keypoints(results): pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4) #face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]).flatten() if results.face_landmarks else np.zeros(468*3) lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21*3) rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21*3) return np.concatenate([pose, lh, rh])model = Sequential()model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30,258)))model.add(LSTM(128, return_sequences=True, activation='relu'))model.add(LSTM(64, return_sequences=False, activation='relu'))model.add(Dense(64, activation='relu'))model.add(Dense(32, activation='relu'))model.add(Dense(actions.shape[0], activation='softmax'))model.load_weights('action.h5')colors = [(245, 117, 16), (117, 245, 16), (16, 117, 245),(16, 117, 245)]#四个动作的框框,要增加动作数目,就多加RGB元组def prob_viz(res, actions, input_frame, colors): output_frame = input_frame.copy() for num, prob in enumerate(res): cv2.rectangle(output_frame, (0, 60 + num * 40), (int(prob * 100), 90 + num * 40), colors[num], -1) cv2.putText(output_frame, actions[num], (0, 85 + num * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) return output_framecap = cv2.VideoCapture(0)# Set mediapipe modelwith mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: while cap.isOpened(): # Read feed ret, frame = cap.read() # Make detections image, results = mediapipe_detection(frame, holistic) print(results) # Draw landmarks draw_styled_landmarks(image, results) # 2. Prediction logic keypoints = extract_keypoints(results) sequence.append(keypoints) sequence = sequence[-30:] if len(sequence) == 30: res = model.predict(np.expand_dims(sequence, axis=0))[0] print(actions[np.argmax(res)]) # 3. Viz logic if res[np.argmax(res)] > threshold: if len(sentence) > 0: if actions[np.argmax(res)] != sentence[-1]: sentence.append(actions[np.argmax(res)]) else: sentence.append(actions[np.argmax(res)]) if len(sentence) > 5: sentence = sentence[-5:] # Viz probabilities image = prob_viz(res, actions, image, colors) cv2.rectangle(image, (0, 0), (640, 40), (245, 117, 16), -1) cv2.putText(image, ' '.join(sentence), (3, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) # Show to screen cv2.imshow('OpenCV Feed', image) # Break gracefully if cv2.waitKey(10) & 0xFF == ord('q'): breakcap.release()cv2.destroyAllWindows()

七、我也只是搬运工,欢迎在评论区讨论、赐教

本文链接地址:https://www.jiuchutong.com/zhishi/300245.html 转载请保留说明!

上一篇:关于uniapp和Vue的生命周期(uniapp和mpvue比较)

下一篇:嵌入式 Linux进程间的通信--信号(linux嵌入式开发教程)

  • 腾讯会议怎么设置多人同屏(腾讯会议怎么设置名字)

    腾讯会议怎么设置多人同屏(腾讯会议怎么设置名字)

  • 不安全的加密算法有哪几种(不安全的加密算密接吗)

    不安全的加密算法有哪几种(不安全的加密算密接吗)

  • 华为手机怎么设置来电视频(华为手机怎么设置下面的三个功能键)

    华为手机怎么设置来电视频(华为手机怎么设置下面的三个功能键)

  • qq精选照片怎么设置(qq精选照片怎么设置排版)

    qq精选照片怎么设置(qq精选照片怎么设置排版)

  • 红米k30pro指纹解锁在哪里(红米k30pro指纹解锁没有了)

    红米k30pro指纹解锁在哪里(红米k30pro指纹解锁没有了)

  • 淘宝618活动什么时候开始(淘宝618活动什么时候)

    淘宝618活动什么时候开始(淘宝618活动什么时候)

  • qq邮箱发视频没有声音(qq邮箱发的视频为什么没有声音)

    qq邮箱发视频没有声音(qq邮箱发的视频为什么没有声音)

  • 如何给word文档命名(如何给word文档加封面)

    如何给word文档命名(如何给word文档加封面)

  • 戴尔一直显示正在重新启动(戴尔电脑一直显示正在启动怎么办)

    戴尔一直显示正在重新启动(戴尔电脑一直显示正在启动怎么办)

  • 微信卡顿阈值调节什么意思(微信卡顿阈值调节找不到了)

    微信卡顿阈值调节什么意思(微信卡顿阈值调节找不到了)

  • 华硕笔记本wifi开关在哪里(华硕笔记本wifi驱动器怎么修复)

    华硕笔记本wifi开关在哪里(华硕笔记本wifi驱动器怎么修复)

  • 苹果11长度多少厘米(苹果11长度多少寸)

    苹果11长度多少厘米(苹果11长度多少寸)

  • 华为mate30pro前置摄像头拍照模糊(华为mate30pro前置摄像头进灰怎么办)

    华为mate30pro前置摄像头拍照模糊(华为mate30pro前置摄像头进灰怎么办)

  • vivo手机拉黑对方还能收到信息吗(vivo手机拉黑对方)

    vivo手机拉黑对方还能收到信息吗(vivo手机拉黑对方)

  • 微信群免打扰还响(微信群免打扰还能看到消息吗)

    微信群免打扰还响(微信群免打扰还能看到消息吗)

  • 滴滴车主服务分怎么刷(滴滴车主服务分被扣6分后什么时候才可以消除)

    滴滴车主服务分怎么刷(滴滴车主服务分被扣6分后什么时候才可以消除)

  • beats怎么连其他设备(beats耳机怎么连接另外一个手机)

    beats怎么连其他设备(beats耳机怎么连接另外一个手机)

  • 怎样把文件发送到qq里(怎样把文件发送到微信)

    怎样把文件发送到qq里(怎样把文件发送到微信)

  • 土电话线松弛为什么听不到声音(土电话的线为什么要拉直)

    土电话线松弛为什么听不到声音(土电话的线为什么要拉直)

  • 苹果xr支持3dtouch吗

    苹果xr支持3dtouch吗

  • 二进制符号(二进制符号表示)

    二进制符号(二进制符号表示)

  • word保留一位小数(word保留一位小数的域代码)

    word保留一位小数(word保留一位小数的域代码)

  • win10护眼色怎么设置(windows10护眼色设置)

    win10护眼色怎么设置(windows10护眼色设置)

  • chattr命令  更改文件隐藏属性(tracet命令)

    chattr命令 更改文件隐藏属性(tracet命令)

  • 外部奖励与内部奖励
  • 申报个体经营所得税时营业外收入怎么填
  • 报税申报不了
  • 契税是什么意思契税是过户费吗
  • 未分配利润转增股本会计处理
  • 其他应收款财务报表取数
  • 存货成本核算方法有哪些
  • 预提工资计入哪个科目
  • 合同印花税用不用计提
  • 未到期责任准备金计算方法
  • 商贸运费核算到几号结束
  • 实报实销电话费
  • 承租人对融资租赁业务核算有哪些主要内容
  • 企业所得税计提金额怎么算
  • 远程清卡失败f50004
  • 车船税交给谁了
  • 分公司可以单独签协议吗
  • 证券投资基金管理人的职权
  • 冲销暂估成本如何写摘要?
  • 固定资产上的配件经常更换
  • 公司低价处理旧汽车涉税账务处理
  • 代销返点如何进行会计处理?
  • 卸载软件怎么清理干净
  • Win10打开浏览器后自动弹出查找框
  • 用现金换承兑怎么做账
  • 内部交易逆流如何算利润
  • 预付账款属于资产性质的账户
  • 企业的民间借贷合法吗
  • 试运行取得的收入如何进行财税处理
  • 啥叫同比增长
  • php stat
  • yii2框架从入门到精通pdf
  • lvs安装配置
  • 共管账户和联名账户
  • thinkphp route
  • 工程结算 增值税
  • 小企业准则季度汇总
  • 出纳对现金的收付应该怎么做
  • 织梦怎样实现文件上传
  • 工业企业发生的各项费用
  • 定金罚则可以约定吗
  • 税款要在15号前扣吗
  • 合营企业和联营企业是重大影响吗
  • 制作海报属于什么行业
  • 基本户和零余额可以是一个账号么
  • sqlserver模糊查询表名
  • 会员代金券模板
  • 会计账簿错误处理方式
  • 跨境电商财务如何报税
  • 公司交的养老保险的钱可以取出来吗
  • 润滑油消费税征收环节税屋
  • 工程类的增值税
  • 公司注销后退资需要交税吗
  • 支付的员工餐费怎么记账
  • 发票管理办法实体法还是程序法
  • 应当设置会计机构的单位有
  • centos6.10安装教程
  • sqlserver存储过程怎么查看
  • solaris ssh offline
  • wuamkop.exe - wuamkop 进程是什么意思
  • find linux命令详解
  • 备份ubuntu系统
  • centos7如何添加光盘
  • 用diskgenius硬盘格式转换怎么使用
  • msedge.exe是什么
  • win7 用户组
  • Windows10系统下iis没有注册.netFrameWork4.0的原因
  • 怎么对js代码程序进行设计
  • cmd读取d盘
  • python ssh 远程执行命令
  • Android OpenGL ES(九)----构建几何物体
  • unity3d基础教程
  • js中tolocalestring
  • javascript面向对象精要pdf下载
  • jquerymobile实例网站
  • JQuery点击行tr实现checkBox选中的简单实例
  • 个人工资扣税标准计算
  • 浙江税务局12366
  • 国家税务局网上电子税务局官网天津
  • 四川省地方税务局2017年1号公告
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设