位置: IT常识 - 正文

用Pytorch搭建一个房价预测模型(pytorch创建模型)

编辑:rootadmin
用Pytorch搭建一个房价预测模型

推荐整理分享用Pytorch搭建一个房价预测模型(pytorch创建模型),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch创建模型,pytorch环境搭建pycharm,pytorch搭建yolov3,pytorch 搭建简单网络,pytorch环境搭建pycharm,pytorch 搭建简单网络,pytorch搭建cnn,pytorch 搭建简单网络,内容如对您有帮助,希望把文章链接给更多的朋友!

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052

目录

一、项目介绍

二、准备工作

三、实验过程

3.1数据预处理

3.2拆分数据集

3.3构建PyTorch模型

3.3.1.数据转换

3.3.2定义模型架构

3.3.3定义损失准则和优化器

3.3.4创建数据加载器

3.3.5训练模型

四、原理讲解

五、补充


一、项目介绍

        在此项目中,目的是预测爱荷华州Ames的房价,给定81个特征,描述了房子、面积、土地、基础设施、公共设施等。埃姆斯数据集具有分类和连续特征的良好组合,大小适中,也许最重要的是,它不像其他类似的数据集(如波士顿住房)那样存在潜在的红线或数据输入问题。在这里我将主要讨论PyTorch建模的相关方面,作为一点额外的内容,我还将演示PyTorch中开发的模型的神经元重要性。你可以在PyTorch中尝试不同的网络架构或模型类型。本项目中的重点是方法论,而不是详尽地寻找最佳解决方案。

二、准备工作

为了准备这个项目,我们首先需要下载数据,并通过以下步骤进行一些预处理。

from sklearn.datasets import fetch_openmldata = fetch_openml(data_id=42165, as_frame=True)

关于该数据集的完整描述,你可以去该网址查看:https://www.openml.org/d/42165。

查看数据特征

import pandas as pddata_ames = pd.DataFrame(data.data, columns=data.feature_names)data_ames['SalePrice'] = data.targetdata_ames.info()

下面是DataFrame的信息

<class 'pandas.core.frame.DataFrame'>RangeIndex: 1460 entries, 0 to 1459Data columns (total 81 columns):Id 1460 non-null float64MSSubClass 1460 non-null float64MSZoning 1460 non-null objectLotFrontage 1201 non-null float64LotArea 1460 non-null float64Street 1460 non-null objectAlley 91 non-null objectLotShape 1460 non-null objectLandContour 1460 non-null objectUtilities 1460 non-null objectLotConfig 1460 non-null objectLandSlope 1460 non-null objectNeighborhood 1460 non-null objectCondition1 1460 non-null objectCondition2 1460 non-null objectBldgType 1460 non-null objectHouseStyle 1460 non-null objectOverallQual 1460 non-null float64OverallCond 1460 non-null float64YearBuilt 1460 non-null float64YearRemodAdd 1460 non-null float64RoofStyle 1460 non-null objectRoofMatl 1460 non-null objectExterior1st 1460 non-null objectExterior2nd 1460 non-null objectMasVnrType 1452 non-null objectMasVnrArea 1452 non-null float64ExterQual 1460 non-null objectExterCond 1460 non-null objectFoundation 1460 non-null objectBsmtQual 1423 non-null objectBsmtCond 1423 non-null objectBsmtExposure 1422 non-null objectBsmtFinType1 1423 non-null objectBsmtFinSF1 1460 non-null float64BsmtFinType2 1422 non-null objectBsmtFinSF2 1460 non-null float64BsmtUnfSF 1460 non-null float64TotalBsmtSF 1460 non-null float64Heating 1460 non-null objectHeatingQC 1460 non-null objectCentralAir 1460 non-null objectElectrical 1459 non-null object1stFlrSF 1460 non-null float642ndFlrSF 1460 non-null float64LowQualFinSF 1460 non-null float64GrLivArea 1460 non-null float64BsmtFullBath 1460 non-null float64BsmtHalfBath 1460 non-null float64FullBath 1460 non-null float64HalfBath 1460 non-null float64BedroomAbvGr 1460 non-null float64KitchenAbvGr 1460 non-null float64KitchenQual 1460 non-null objectTotRmsAbvGrd 1460 non-null float64Functional 1460 non-null objectFireplaces 1460 non-null float64FireplaceQu 770 non-null objectGarageType 1379 non-null objectGarageYrBlt 1379 non-null float64GarageFinish 1379 non-null objectGarageCars 1460 non-null float64GarageArea 1460 non-null float64GarageQual 1379 non-null objectGarageCond 1379 non-null objectPavedDrive 1460 non-null objectWoodDeckSF 1460 non-null float64OpenPorchSF 1460 non-null float64EnclosedPorch 1460 non-null float643SsnPorch 1460 non-null float64ScreenPorch 1460 non-null float64PoolArea 1460 non-null float64PoolQC 7 non-null objectFence 281 non-null objectMiscFeature 54 non-null objectMiscVal 1460 non-null float64MoSold 1460 non-null float64YrSold 1460 non-null float64SaleType 1460 non-null objectSaleCondition 1460 non-null objectSalePrice 1460 non-null float64dtypes: float64(38), object(43)memory usage: 924.0+ KB

接下来,我们还将使用一个库,即 captum,它可以检查 PyTorch 模型的特征和神经元重要性。

pip install captum

 在做完这些准备工作后,我们来看看如何预测房价。

三、实验过程3.1数据预处理

        在这里,首先要进行数据缩放处理,因为所有的变量都有不同的尺度。分类变量需要转换为数值类型,以便将它们输入到我们的模型中。我们可以选择一热编码,即我们为每个分类因子创建哑变量,或者是序数编码,即我们对所有因子进行编号,并用这些数字替换字符串。我们可以像其他浮动变量一样将虚拟变量送入,而序数编码则需要使用嵌入,即线性神经网络投影,在多维空间中对类别进行重新排序。我们在这里采取嵌入的方式。

import numpy as npfrom category_encoders.ordinal import OrdinalEncoderfrom sklearn.preprocessing import StandardScalernum_cols = list(data_ames.select_dtypes(include='float'))cat_cols = list(data_ames.select_dtypes(include='object'))ordinal_encoder = OrdinalEncoder().fit( data_ames[cat_cols])standard_scaler = StandardScaler().fit( data_ames[num_cols])X = pd.DataFrame( data=np.column_stack([ ordinal_encoder.transform(data_ames[cat_cols]), standard_scaler.transform(data_ames[num_cols]) ]), columns=cat_cols + num_cols)3.2拆分数据集

       在构建模型之前,我们需要将数据拆分为训练集和测试集。在这里,我们添加了一个数值变量的分层。这可以确保不同的部分(其中五个)在训练集和测试集中都以同等的数量包含。

np.random.seed(12)from sklearn.model_selection import train_test_splitbins = 5sale_price_bins = pd.qcut( X['SalePrice'], q=bins, labels=list(range(bins)))X_train, X_test, y_train, y_test = train_test_split( X.drop(columns='SalePrice'), X['SalePrice'], random_state=12, stratify=sale_price_bins)3.3构建PyTorch模型

        接下来开始建立我们的PyTorch模型。我们将使用PyTorch实现一个具有批量输入的神经网络回归,具体将涉及以下步骤。

1. 将数据转换为Torch tensors2. 定义模型结构3. 定义损失标准和优化器。4. 创建一个批次的数据加载器5. 跑步训练3.3.1.数据转换

首先将数据转换为torch tensors

from torch.autograd import Variablenum_features = list( set(num_cols) - set(['SalePrice', 'Id']))X_train_num_pt = Variable( torch.cuda.FloatTensor( X_train[num_features].values ))X_train_cat_pt = Variable( torch.cuda.LongTensor( X_train[cat_cols].values ))y_train_pt = Variable( torch.cuda.FloatTensor(y_train.values)).view(-1, 1)X_test_num_pt = Variable( torch.cuda.FloatTensor( X_test[num_features].values ))X_test_cat_pt = Variable( torch.cuda.LongTensor( X_test[cat_cols].values ).long())y_test_pt = Variable( torch.cuda.FloatTensor(y_test.values)).view(-1, 1)

        这可以确保我们将数字和分类数据加载到单独的变量中,类似于NumPy。如果你把数据类型混合在一个变量(数组/矩阵)中,它们就会变成对象。我们希望把数值变量弄成浮点数,把分类变量弄成长(或int),索引我们的类别。我们还将训练集和测试集分开。显然,一个ID变量在模型中不应该是重要的。在最坏的情况下,如果ID与目标有任何相关性,它可能会引入目标泄漏。我们已经把它从这一步的处理中删除了。

3.3.2定义模型架构class RegressionModel(torch.nn.Module): def __init__(self, X, num_cols, cat_cols, device=torch.device('cuda'), embed_dim=2, hidden_layer_dim=2, p=0.5): super(RegressionModel, self).__init__() self.num_cols = num_cols self.cat_cols = cat_cols self.embed_dim = embed_dim self.hidden_layer_dim = hidden_layer_dim self.embeddings = [ torch.nn.Embedding( num_embeddings=len(X[col].unique()), embedding_dim=embed_dim ).to(device) for col in cat_cols ] hidden_dim = len(num_cols) + len(cat_cols) * embed_dim, # hidden layer self.hidden = torch.nn.Linear(torch.IntTensor(hidden_dim), hidden_layer_dim).to(device) self.dropout_layer = torch.nn.Dropout(p=p).to(device) self.hidden_act = torch.nn.ReLU().to(device) # output layer self.output = torch.nn.Linear(hidden_layer_dim, 1).to(device) def forward(self, num_inputs, cat_inputs): '''Forward method with two input variables - numeric and categorical. ''' cat_x = [ torch.squeeze(embed(cat_inputs[:, i] - 1)) for i, embed in enumerate(self.embeddings) ] x = torch.cat(cat_x + [num_inputs], dim=1) x = self.hidden(x) x = self.dropout_layer(x) x = self.hidden_act(x) y_pred = self.output(x) return y_predhouse_model = RegressionModel( data_ames, num_features, cat_cols)

        我们在两个线性层(上的激活函数是整流线性单元激活(ReLU)函数。这里需要注意的是,我们不可能将相同的架构(很容易)封装成一个顺序模型,因为分类和数值类型上发生的操作不同。

3.3.3定义损失准则和优化器

        接下来,定义损失准则和优化器。我们将均方误差(MSE)作为损失,随机梯度下降作为我们的优化算法。

criterion = torch.nn.MSELoss().to(device)optimizer = torch.optim.SGD(house_model.parameters(), lr=0.001)3.3.4创建数据加载器

现在,创建一个数据加载器,每次输入一批数据。

data_batch = torch.utils.data.TensorDataset( X_train_num_pt, X_train_cat_pt, y_train_pt)dataloader = torch.utils.data.DataLoader( data_batch, batch_size=10, shuffle=True)

我们设置了10个批次的大小,接下来我们可以进行训练了。

3.3.5.训练模型

       基本上,我们要在epoch上循环,在每个epoch内推理出性能,计算出误差,优化器根据误差进行调整。这是在没有训练的内循环的情况下,在epochs上的循环。

from tqdm.notebook import trangetrain_losses, test_losses = [], []n_epochs = 30for epoch in trange(n_epochs): train_loss, test_loss = 0, 0 # print the errors in training and test: if epoch % 10 == 0 : print( 'Epoch: {}/{}\t'.format(epoch, 1000), 'Training Loss: {:.3f}\t'.format( train_loss / len(dataloader) ), 'Test Loss: {:.3f}'.format( test_loss / len(dataloader) ) )

 训练是在这个循环里面对所有批次的训练数据进行的。

for (x_train_num_batch,x_train_cat_batch,y_train_batch) in dataloader: (x_train_num_batch,x_train_cat_batch, y_train_batch) = ( x_train_num_batch.to(device), x_train_cat_batch.to(device), y_train_batch.to(device)) pred_ytrain = house_model.forward(x_train_num_batch, x_train_cat_batch) loss = torch.sqrt(criterion(pred_ytrain, y_train_batch)) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() with torch.no_grad(): house_model.eval() pred_ytest = house_model.forward(X_test_num_pt, X_test_cat_pt) test_loss += torch.sqrt(criterion(pred_ytest, y_test_pt)) train_losses.append(train_loss / len(dataloader)) test_losses.append(test_loss / len(dataloader))用Pytorch搭建一个房价预测模型(pytorch创建模型)

训练结果如下:

我们取 nn.MSELoss 的平方根,因为 PyTorch 中 nn.MSELoss 的定义如下:

((input-target)**2).mean()

绘制一下我们的模型在训练期间对训练和验证数据集的表现。

plt.plot( np.array(train_losses).reshape((n_epochs, -1)).mean(axis=1), label='Training loss')plt.plot( np.array(test_losses).reshape((n_epochs, -1)).mean(axis=1), label='Validation loss')plt.legend(frameon=False)plt.xlabel('epochs')plt.ylabel('MSE')

        在我们的验证损失停止下降之前,我们及时停止了训练。我们还可以对目标变量进行排序和bin,并将预测结果与之对比绘制,以便了解模型在整个房价范围内的表现。这是为了避免回归中的情况,尤其是用MSE作为损失,即你只对一个中值范围的预测很好,接近平均值,但对其他任何东西都做得不好。

        我们可以看到,事实上,这个模型在整个房价范围内的预测非常接近。事实上,我们得到的Spearman秩相关度约为93%,具有非常高的显著性,这证实了这个模型的表现具有很高的准确性。

四、原理讲解

        深度学习神经网络框架使用不同的优化算法。其中流行的有随机梯度下降(SGD)、均方根推进(RMSProp)和自适应矩估计(ADAM)。我们定义了随机梯度下降作为我们的优化算法。另外,我们还可以定义其他优化器。

opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.6)opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.1)opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.8, 0.98))

        SGD的工作原理与梯度下降相同,只是它每次只在一个例子上工作。有趣的是,收敛性与梯度下降相似,并且更容易占用计算机内存。

        RMSProp的工作原理是根据梯度符号来调整算法的学习率。最简单的变体是检查最后两个梯度符号,然后调整学习率,如果它们相同,则增加一个分数,如果它们不同,则减少一个分数。

        ADAM是最流行的优化器之一。它是一种自适应学习算法,根据梯度的第一和第二时刻改变学习率。

        Captum是一个工具,可以帮助我们了解在数据集上学习的神经网络模型的来龙去脉。它可以帮助我们学习以下内容。

特征重要性

层级重要性

神经元的重要性

        这在学习可解释的神经网络中是非常重要的。在这里,综合梯度已经被应用于理解特征重要性。之后,还用层传导法来证明神经元的重要性。

五、补充

        既然我们已经定义并训练了我们的神经网络,那么让我们使用 captum 库找到重要的特征和神经元。

from captum.attr import ( IntegratedGradients, LayerConductance, NeuronConductance)house_model.cpu()for embedding in house_model.embeddings: embedding.cpu()house_model.cpu()ing_house = IntegratedGradients(forward_func=house_model.forward, )#X_test_cat_pt.requires_grad_()X_test_num_pt.requires_grad_()attr, delta = ing_house.attribute( X_test_num_pt.cpu(), target=None, return_convergence_delta=True, additional_forward_args=X_test_cat_pt.cpu())attr = attr.detach().numpy()

 现在,我们有了一个NumPy的特征重要性数组。层和神经元的重要性也可以用这个工具获得。让我们来看看我们第一层的神经元importances。我们可以传递house_model.act1,这是第一层线性层上面的ReLU激活函数。

cond_layer1 = LayerConductance(house_model, house_model.act1)cond_vals = cond_layer1.attribute(X_test, target=None)cond_vals = cond_vals.detach().numpy()df_neuron = pd.DataFrame(data = np.mean(cond_vals, axis=0), columns=['Neuron Importance'])df_neuron['Neuron'] = range(10)

这张图显示了神经元的重要性。显然,一个神经元就是不重要的。我们还可以通过对之前得到的NumPy数组进行排序,看到最重要的变量。

df_feat = pd.DataFrame(np.mean(attr, axis=0), columns=['feature importance'] )df_feat['features'] = num_featuresdf_feat.sort_values( by='feature importance', ascending=False).head(10)

 这里列出了10个最重要的变量

        通常情况下,特征导入可以帮助我们既理解模型,又修剪我们的模型,使其变得不那么复杂(希望减少过度拟合)。

本文链接地址:https://www.jiuchutong.com/zhishi/300156.html 转载请保留说明!

上一篇:vue-router + element-plus实现面包屑导航栏和路由标签栏

下一篇:教你一文解决 js 数字精度丢失问题(js遇到的问题)

  • 荣耀手机截屏有几种方式(荣耀手机截屏有录音功能怎么关闭)

    荣耀手机截屏有几种方式(荣耀手机截屏有录音功能怎么关闭)

  • 淘宝怎么微信零钱支付(淘宝如何用微信零钱支付)

    淘宝怎么微信零钱支付(淘宝如何用微信零钱支付)

  • 打电话用户正忙是什么意思(打电话用户正忙短信通知他)

    打电话用户正忙是什么意思(打电话用户正忙短信通知他)

  • 华为手机用什么键可以截屏(华为手机用什么软件下载app)

    华为手机用什么键可以截屏(华为手机用什么软件下载app)

  • 华为防抖功能在哪里(华为防抖功能在哪里打开)

    华为防抖功能在哪里(华为防抖功能在哪里打开)

  • 话费欠费不交3个月会怎样(话费欠费不交会越欠越多吗)

    话费欠费不交3个月会怎样(话费欠费不交会越欠越多吗)

  • 快手上年龄设置错了怎么改(快手上年龄设置怎么设置)

    快手上年龄设置错了怎么改(快手上年龄设置怎么设置)

  • 笔记本黑屏怎么强制关机重启(笔记本黑屏怎么解决)

    笔记本黑屏怎么强制关机重启(笔记本黑屏怎么解决)

  • 我的快手界面跟别人的不一样(快手显示页面怎么变了)

    我的快手界面跟别人的不一样(快手显示页面怎么变了)

  • qq蓝色主题怎么换(最新版qq主题怎么变蓝)

    qq蓝色主题怎么换(最新版qq主题怎么变蓝)

  • qq电话左边的麦克风什么用(qq电话旁边的麦克风是什么意思)

    qq电话左边的麦克风什么用(qq电话旁边的麦克风是什么意思)

  • 手机锂电池寿命(手机锂电池寿命能到十年吗)

    手机锂电池寿命(手机锂电池寿命能到十年吗)

  • 华为原封和后封的区别(华为原封后封怎么区别)

    华为原封和后封的区别(华为原封后封怎么区别)

  • 手机黑名单怎么解除(手机黑名单怎么设置成关机)

    手机黑名单怎么解除(手机黑名单怎么设置成关机)

  • 淘宝能二次申请退款吗(淘宝二次申请退款商家拒绝后)

    淘宝能二次申请退款吗(淘宝二次申请退款商家拒绝后)

  • 浴霸摄像头什么意思(浴霸式摄像头 什么意思)

    浴霸摄像头什么意思(浴霸式摄像头 什么意思)

  • 基于C#开发 B/S架构的实验室管理系统 云LIS系统(MVC + SQLserver + Redis)(c#开发入门及项目实战)

    基于C#开发 B/S架构的实验室管理系统 云LIS系统(MVC + SQLserver + Redis)(c#开发入门及项目实战)

  • 【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation(论文精读分析报告)

    【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation(论文精读分析报告)

  • 解决某些情况下 ECharts 饼图多行标签重叠问题(解决什么情况)

    解决某些情况下 ECharts 饼图多行标签重叠问题(解决什么情况)

  • Discuz!管理员无法登录后台时更新系统缓存的方法(discuz管理中心进不去)

    Discuz!管理员无法登录后台时更新系统缓存的方法(discuz管理中心进不去)

  • 小规模纳税人月销售额超过15万
  • 进料加工为什么要差额确认收入呢
  • 汽车租赁企业
  • 季度残保金如何申报
  • 用友t3普及版价格
  • 银行端查询缴税凭证怎么盖章
  • 尚未收到货款,填什么凭证
  • 房地产公司机构
  • 公司清算 债权
  • 支付境外销售佣金是不是属于完全在境外发生的服务
  • 建筑行业机械租赁费计入什么科目
  • 存货报废应如何记账
  • 合作社开具的免税普票计算抵扣
  • 企业名称变更后社保也要变更吗
  • 交换房产土地如何交税
  • 采购材料的运费怎么做分录
  • windows 10如何清除联网记录
  • win11最低硬件要求几代
  • 行纪合同的效力
  • 怎么认定是否为包工头
  • 32位升级64位系统教程
  • redis使用php
  • 如何使用定向流量
  • 关于工程材料的质量控制说法正确的是
  • window10玩吃鸡总崩溃
  • pniopcac.exe是什么进程
  • 免抵退税务处理
  • newsupd.exe - newsupd是什么进程 有什么用
  • 软件能否成为无线网
  • 辅导期纳税人注意事项
  • phpsql防注入代码
  • 无形资产有进项税吗
  • 读懂spring源码
  • linux 高并发网络编程
  • 不仅仅是喜欢原唱
  • 公司开具了电子发票
  • 预缴的企业所得税能抵扣企业所得额嘛
  • 个人社保进费用,还要报个税么
  • python requests读取服务器响应
  • js怎么执行函数
  • mysql常用命令行大全
  • 金税三期个人所得税申报
  • 资本成本在财务报表中怎么体现
  • 职工福利费允许抵扣吗
  • 收据4联
  • SQLServer 2008 :error 40出现连接错误的解决方法
  • 退休职工能否扣医保
  • 企业收到投资款应贷记什么账户
  • 公司的备用金属怎么处理
  • 固定资产清理是什么账户
  • 预付账款指的是哪些
  • 消费税为什么是中央税还是地方税
  • 政府补助专项资金
  • 收到科技局补贴金费怎么入账
  • 电子增值税发票样本
  • 先付款后开票还是先开票后付款
  • 会计证异地可以考吗
  • 转账支票有效期6个月
  • sqlserver中通过osql/ocmd批处理批量执行sql文件的方法
  • bios怎么更改硬盘格式
  • win8打开桌面
  • diy组装电脑前置怎么样
  • 驱动人生公司怎么样
  • win10系统笔记本怎么连接wifi
  • linux操作系统配置网络
  • cocos2dx用什么ide
  • android自学之路
  • shell脚本echo输出变量
  • shell printf 变量
  • python字典常用操作以及字典的嵌套
  • 基于jquery实现小说
  • python关键字none
  • javascript边框
  • webservice规范
  • jquery设置边框
  • python系统监控
  • 东营市税务局领导分工
  • 全国哪些地区社保比例高
  • 广东地税局领导班子
  • 电脑上怎么登录个人网络
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设