位置: IT常识 - 正文

Attentional Feature Fusion 注意力特征融合

编辑:rootadmin
Attentional Feature Fusion 注意力特征融合 Attentional Feature Fusion 注意力特征融合

推荐整理分享Attentional Feature Fusion 注意力特征融合,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

最近看到一篇比较不错的特征融合方法,基于注意力机制的 AAF ,与此前的 SENet 、SKNet 等很相似,但 AFF 性能优于它们,并且适用于更广泛的场景,包括短和长跳连接以及在 Inception 层内引起的特征融合。AFF 是由南航提出的注意力特征融合,即插即用!

本篇博客主要参考自知乎作者 OucQxw ,知乎原文地址:https://zhuanlan.zhihu.com/p/424031096

论文下载地址:https://arxiv.org/pdf/2009.14082.pdf

Github代码地址:https://github.com/YimianDai/open-aff

一、Motivation

特征融合是指来自不同层次或分支的特征的组合,是现代神经网络体系结构中无所不在的一部分。它通常通过简单线性的操作(例如:求和或者串联来实现),但这可能不是最佳的选择。本文提出了一个统一的通用方案,即注意力特征融合( AFF ),该方案适用于大多数常见场景,包括短和长跳连接以及在 Inception 层内引起的特征融合。

为了更好地融合语义和尺度不一致的特征,我们提出了多尺度通道注意力模块 ( MS-CAM ),该模块解决了融合不同尺度特征时出现的问题。我们还证明了初始特征融合可能会成为瓶颈,并提出了迭代注意力特征融合模块(iAFF )来缓解此问题。

近年发展的 SKNet 和 ResNeSt 注意力特征融合存在的问题:场景限制:SKNet 和 ResNeSt 只关注同一层的特征选择,无法做到跨层特征融合。简单的初始集成 :为了将得到的特征提供给注意力模块,SKNet 通过相加来进行特征融合,而这些特征在规模和语义上可能存在很大的不一致性,对融合权值的质量也有很大的影响,使得模型表现受限。偏向上下文聚合尺度:SKNet 和 ResNeSt 中的融合权值是通过全局通道注意机制生成的,对于分布更全局的信息,该机制更受青睐,但是对于小目标效果就不太好。是否可以通过神经网络动态地融合不同尺度的特征?本文的贡献,针对于上述三个问题,提出以下解决办法:注意特征融合模块(AFF),适用于大多数常见场景,包括由short and long skip connections以及在Inception层内引起的特征融合。迭代注意特征融合模块(IAFF),将初始特征融合与另一个注意力模块交替集成。引入多尺度通道注意力模块(MSCAM),通过尺度不同的两个分支来提取通道注意力。二、MethodMulti-scale Channel Attention Module (MS-CAM)

​ MS-CAM 主要是延续 SENet 的想法,再于 CNN 上结合 Local / Global 的特征,并在空间上用 Attention 来 融合多尺度信息 。

​ MS-CAM 有 2 个较大的不同:

MS-CAM 通过逐点卷积(1x1卷积)来关注通道的尺度问题,而不是大小不同的卷积核,使用点卷积,为了让 MS-CAM 尽可能的轻量化。MS-CAM 不是在主干网中,而是在通道注意力模块中局部本地和全局的特征上下文特征。

上图为 MS-CAM 的结构图,X 为输入特征,X' 为融合后的特征,右边两个分支分别表示全局特征的通道注意力和局部特征的通道注意力,局部特征的通道注意力的计算公式 L(X) 如下:

Attentional Feature Fusion 注意力特征融合

实现的代码如下:

class MS_CAM(nn.Module): ''' 单特征进行通道注意力加权,作用类似SE模块 ''' def __init__(self, channels=64, r=4): super(MS_CAM, self).__init__() inter_channels = int(channels // r) # 局部注意力 self.local_att = nn.Sequential( nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) # 全局注意力 self.global_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.sigmoid = nn.Sigmoid() def forward(self, x): xl = self.local_att(x) xg = self.global_att(x) xlg = xl + xg wei = self.sigmoid(xlg) return x * weiAttentional Feature Fusion(AFF)

给定两个特征 X, Y 进行特征融合( Y 代表感受野更大的特征)。

AFF 的计算方法如下:

对输入的两个特征 X , Y 先做初始特征融合,再将得到的初始特征经过 MS-CAM 模块,经过 sigmod 激活函数,输出值为 0~1 之间,作者希望对 X 、Y 做加权平均,就用 1 减去这组 Fusion weight ,可以作到 Soft selection ,通过训练,让网络确定各自的权重。

实现的代码如下:

class AFF(nn.Module): ''' 多特征融合 AFF ''' def __init__(self, channels=64, r=4): super(AFF, self).__init__() inter_channels = int(channels // r) # 局部注意力 self.local_att = nn.Sequential( nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) # 全局注意力 self.global_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.sigmoid = nn.Sigmoid() def forward(self, x, residual): xa = x + residual xl = self.local_att(xa) xg = self.global_att(xa) xlg = xl + xg wei = self.sigmoid(xlg) xo = x * wei + residual * (1 - wei) return xoiterative Attentional Feature Fusion ( iAFF )

​ 在注意力特征融合模块中,X , Y 初始特征的融合仅是简单对应元素相加,然后作为注意力模块的输入会对最终融合权重产生影响。作者认为如果想要对输入的特征图有完整的感知,只有将初始特征融合也采用注意力融合的机制,一种直观的方法是使用另一个 attention 模块来融合输入的特征。

公式跟 AFF 的计算一样,仅仅是多加一层attention。

实现的代码如下:

class iAFF(nn.Module): ''' 多特征融合 iAFF ''' def __init__(self, channels=64, r=4): super(iAFF, self).__init__() inter_channels = int(channels // r) # 局部注意力 self.local_att = nn.Sequential( nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) # 全局注意力 self.global_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) # 第二次局部注意力 self.local_att2 = nn.Sequential( nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) # 第二次全局注意力 self.global_att2 = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.sigmoid = nn.Sigmoid() def forward(self, x, residual): xa = x + residual xl = self.local_att(xa) xg = self.global_att(xa) xlg = xl + xg wei = self.sigmoid(xlg) xi = x * wei + residual * (1 - wei) xl2 = self.local_att2(xi) xg2 = self.global_att(xi) xlg2 = xl2 + xg2 wei2 = self.sigmoid(xlg2) xo = x * wei2 + residual * (1 - wei2) return xo三、Experiments

这里展示部分实验结果,详细的实验结果请参考原论文。

为了验证Multi-scale 的作法是否有效,作者设置了Global + Global 和Local + Local两种方法,与Global + Local对比,发现全局+局部的效果还是最优的。

在各种主流网络中,使用本论文中提出的特征融合方法,用于短跳连接、长跳连接、同一层的特征融合中,效果均优于之前的模型。

不同的图像分类数据集上,在原有的网络模型中加入本文提出的特征融合方法,并与其原模型进行比较,发现准确率和网络的参数大小都得到了不错的性能提升。

本文链接地址:https://www.jiuchutong.com/zhishi/300057.html 转载请保留说明!

上一篇:使用YOLOv5模型进行目标检测!AI大佬手撕源码带你学(yolov3模型大小是多少)

下一篇:详解Inception结构:从Inception v1到Xception(critical_section 结构)

  • 图书属于什么经济类别
  • 公司法人必须办社保吗?
  • 工程项目结算流程图
  • 综合所得申报是报上个月的吗
  • 待认证进项税额认证以后怎么做分录
  • 减免税款计入哪个科目
  • 咨询服务费预收率怎么算
  • 民间非营利机构加班费记什么科目
  • 租赁财产的残值处理
  • 预付账款和暂估入账的区别
  • 发票二维码只有一半可以收吗
  • 台湾发票大陆能做账吗
  • 所有增值税发票都有抵扣联吗
  • 增值税发票作废如何处理
  • 房地产企业收到预收款如何纳税
  • 营改增后房产土地作价入股该如何做税务处理?
  • 跨年度冲减收入
  • 法的分级
  • 增值税普票只要发票号吗
  • 政府机关税号是1开头的吗
  • 个人转让住房交土地增值税吗
  • 出口样品可以申请专票吗
  • 贸易公司所得税率多少
  • 报个税失业保险怎么填
  • 注册资本与注册资金的区别
  • 商品促销有关问题
  • 购买原材料的运费属于什么费用
  • configureandwatch
  • Win7系统Syswow64文件夹是什么及能否删除的相关内
  • 若依前后端分离需要准备啥
  • 赠与合同的法定撤销和任意撤销
  • sxgdsenu.exe - sxgdsenu是什么进程 有什么用
  • win10系统白名单怎么设置
  • Linux /bin, /sbin, /usr/bin, /usr/sbin 区别
  • pps是啥文件
  • ahqtb.exe是啥进程 ahqtb进程信息查询
  • 免税项目可以弥补税款吗
  • 水电费分割单会计分录
  • 学生个人网页制作html5
  • java前端开发是做什么的
  • php支付宝现实支付要收费吗
  • python如何在画布上写字
  • 所有者权益类的借贷方向是什么
  • 资本公积常用的计量方法
  • 其他应收款如何计提减值准备
  • 进项税额计提是哪个科目
  • sql中count或sum为条件的查询示例(sql查询count)
  • 红冲发票是什么影响
  • 发票普通发票
  • 外贸出口企业申报年月怎么填
  • 企业取得交易性金融资产的主要目的是
  • 员工食堂买菜怎么写分录
  • 营利性养老机构有补贴吗
  • 残保金缴纳额计算公式
  • 增值税减免税款计入什么科目
  • 银行日记账登记依据
  • 税控盘服务费会计科目
  • 小规模普票冲红能退税吗?
  • 事业单位小规模纳税人咨询服务的税率
  • 独立法人资格是独立核算
  • sql比较两个集合
  • win7怎么看
  • desl.exe是什么
  • mac的100个必备小技巧
  • win10如何清除系统
  • 苹果电脑Mac系统版本所对应的数字
  • nodejs基本原理
  • python socket编程步骤
  • JavaScript正则表达
  • nodejs socket框架
  • python调用python代码
  • javascript语言入门教程
  • 信息流广告与原生广告的区别
  • 使用jQuery加载html页面到指定的div实现方法
  • 工会经费按年还是季度申报
  • 国税局政审审考生什么
  • 重庆国税电子税务局
  • 深圳布吉下水径旧改
  • 日本海关关税税率表
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设