位置: IT常识 - 正文

PCA降维原理 操作步骤与优缺点(pca降维的原理)

编辑:rootadmin
PCA降维原理 操作步骤与优缺点

推荐整理分享PCA降维原理 操作步骤与优缺点(pca降维的原理),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pca降维的原理,pca降维的原理及步骤,pca降维例题详解,pca降维后怎么输出重要特征,pca降维图,pca降维图,pca降维的原理,pca降维算法的作用,内容如对您有帮助,希望把文章链接给更多的朋友!

  PCA全称是Principal Component Analysis,即主成分分析。它主要是以“提取出特征的主要成分”这一方式来实现降维的。

   介绍PCA的大体思想,先抛开一些原理公式,如上图所示,原来是三维的数据,通过分析找出两个主成分PC1和PC2,那么直接在这两个主成分的方向上就可以形成一个平面,这样就可以把我们三位的样本点投射到这一个平面上(如右图)。那么此时的PC1和PC2都不单单是我们的其中某一维特征,而是各个特征通过某种线性变化的组合结果。这就是PCA降维宏观上的效果。

  那PCA降维是如何实现的呢?在讲其具体实现原理前,先要清楚方差和协方差的概念:方差大概就是一些点在一个维度的偏差,越分散的话方差越大。而协方差是衡量一个维度是否会对另一个维度有所影响,从而查看这两个维度之间是否有关系。

  PCA通过线性变换将元数据映射到新的坐标系中,使映射后的第一个坐标上的方差最大,第一个坐标也就是第一个主成分PC1,以此类推。在sklearn的PCA包中,有一个explained_variance_ratio_,它代表降维后的各主成分的方差值占总方差值的比例,这个比例越大,则越是重要的主成分。

  那么,怎么样才能实现“找到那样一个坐标,使得数据在这个坐标上的映射方差最大”呢?按照下面的计算过程就可以实现这个效果。

PCA计算过程:

  PCA总体计算步骤大概有:

  首先对于数据集,有m个样本,设每个样本有n个维度。表示如下:

   在上图中,其实只要看中间那幅图就行。左图和右图则是我分别用来突出样本的和特征的关系,比如第一列,就是第一个样本的所有值;而第一行,就是第一个特征的所有值。

  对于每一个维度我们就可以得到均值,如下图所示:

   每一个维度减去这个均值,得到一个矩阵(相当于将坐标进行了平移)。

  到这里,我们的数据“去中心化”就完成了,这样去中心化的目的就是:让每个特征下的均值都为0,后续计算特征之间协方差的时候就可以简化计算。注意,PCA的降维就是围绕每个特征(即每个坐标轴)进行展开,而不是围绕样本。因为就想开头图上描述的一样,样本点数量是不变化的,但是特征的维度会有改变,导致样本点的形状分布上发生变化。

  最终,我们得到的去中心化结果如下:

   现在,我们需要对处理后的数据在特征维度(也就是各个坐标轴之间)进行协方差矩阵的运算。

  在图中我们一共有n个特征,若特征两两组合,我们会得到一个n^2的协方差矩阵。如下图所示:(其中每个f就是原数据中一行一行的特征)

   而协方差的定义为:

  因为我们的去中心化操作,所有特征的均值(对应公式中的x和y的均值)已经变成0了,所以此时协方差可以表示成:

  因此,协方差矩阵可以写成:

  其中,m是样本点的个数,在上面已经提到过了。

PCA降维原理 操作步骤与优缺点(pca降维的原理)

(补充一点:其实可以发现,要得到这样的协方差矩阵,只需要原数据乘以自身的转置就能得到,如下图所示:

 )

  接下来,就是对协方差矩阵求特征值和特征向量,并根据特征值从大到小排序,每个特征值对应着一个特征向量。对于求特征值和特征向量的方法,其实就是用特征值分解,或者是svd矩阵分解,在这篇文章里有提到过,原理都类似。

  有了特征值和特征向量,我们讲一下它们对应的意义和接下来的操作步骤:

先说结论:(我们知道得到的特征值和特征向量是一一对应的)

对协方差矩阵求出来的特征向量,就是新坐标轴方向、数据的旋转方向或者说是新的主成分方向。

对协方差矩阵求出来的特征值,就是数据在对应新坐标轴上投影的方差大小,或者说是其对应特征向量上包含的信息量。而某一特征值除以全部特征值和的商就为:其对应特征向量的(方差)贡献率。

  我们希望数据在新坐标轴上投影的方差尽可能大,因此往往选取前k个最大特征值所对应的特征向量。将得到的特征值从大到小排序,对应的特征向量就是第一个主成分、第二个主成分……以此类推。将这些特征向量组成矩阵P,那么我们降维后的数据就是:

(这个降维方式也可以从矩阵乘法的顺序稍微的理解一下:特征向量的每一行(每一个特征向量)逐一去乘以原数据中的每条数据,逐一地去旋转和映射……)  

至此,PCA降维的操作步骤就做完了。

  但为什么根据协方差矩阵得出的特征值以及特征向量,就可以拿来对原数据进行降维呢?这里面就涉及数学比如拉格朗日之类的以及线性代数上面的推导和证明。比如从另一个角度来看,每一个新的坐标轴是由原来的坐标维度线性相加的结果。

  仔细探究了一下,发现要画的图和说的意思实在太多了,就不钻了。总之,得出的特征向量构成的矩阵是一个完美的用于原数据“旋转”或者原坐标轴“线性相加”的矩阵,使得操作之后的数据在新坐标轴上有着最大的方差,以及最重要的——较少的坐标轴数。

关于n_components

关于主成分个数的确定,在scikit-learn中调用pca = PCA(n_components=n)时,有两种定义方式: 

  1.一种是把n设置成整数,比如n=3,表示要保留三个主成分,即新坐标轴有三个维度。

  2.一种是把n设置成小数,假设所有特征向量加起来的贡献率是1,假定要0.95的主成分贡献率,就令n=0.95,那么就会按特征值从大到小一直加到累计贡献率大于等于0.95的特征向量个数,最终就会降到那个维。

  第一种是偏向于指定维度的数量,第二种则偏向于指定主成分的保留程度。

PCA降维的优缺点

优点:

1.通过PCA降维之后的各个主成分之间是正交的,可以消除原始数据之间相互影响的因素。

2.PCA降维的计算过程并不复杂,因为主要就是对一个协方差矩阵做特征值分解,因此实现起来较简单容易。

3.在保留大部分主要信息的前提下,起到了降维效果。

缺点:

1.主成分特征维度的含义具有模糊性,解释性差。(我们最多可以理解成主成分只是由原来的坐标维度线性相加的结果,但加出来之后它到底是啥就不好说了)

2.PCA降维的标准是选取令原数据在新坐标轴上方差最大的主成分。但方差小的特征就不一定不重要,这样的唯一标准有可能会损失一些重要信息。

3.PCA毕竟是只保留特定百分比的主成分,属于“有损压缩”,难免会损失一些信息。

本文链接地址:https://www.jiuchutong.com/zhishi/299623.html 转载请保留说明!

上一篇:如何部署一个自己的AI绘图(怎样部署)

下一篇:人体姿态识别(人体姿态识别国内外研究现状)

  • 小规模免缴增值税吗
  • 冲减计提
  • 建筑发票开具与土增税扣有什么关系?
  • 增值税留抵税务处理办法
  • 转让费和押金的区别
  • 企业需要政府哪方面政策支持
  • 地方教育费附加的计税依据是什么
  • 租车属于经营租赁吗
  • 公司可以为非本人开户吗
  • 技术服务费怎么开票税率
  • 国内旅客运输服务电子普通发票
  • 房地产中的存货是什么意思
  • 当年实现的利润弥补亏损会计分录
  • 2017小规模纳税人标准
  • 住房公积金证书更新
  • 关于诉讼费减半如何减的问题
  • 简易征收是优惠政策吗
  • 残保金征收单位
  • 预付卡销售和充值
  • 笔记本开机黑屏不显示任何东西
  • 单位给个人开票需要什么资料才能开
  • 鸿蒙系统通知栏界面怎么打开
  • 企业应纳所得税计算公式
  • php数据库语句
  • 收到过期银行汇票怎么办
  • 开发产品完工结转
  • php yield 异步
  • 固定资产盘盈为什么要调整所得税
  • 报表重分类和不重分类
  • 房产税计入哪里
  • html零基础入门教程
  • 补收入账是什么意思
  • 体检的收据是什么
  • 税金及附加包括哪些
  • 固定资产出售算不算收入
  • 如何扣除企业接单费用
  • phpcms rce
  • 养老院筹开计划
  • 出售其他债权投资产生的收益为什么计入留存收益
  • 应收账款贷方如何核算
  • 列入固定资产的标准
  • 小规模印花税有减免政策吗
  • 绩效工资定义及标准
  • 应付账款的发生额怎么算
  • 汽车销售公司办理贷款重点调查哪些
  • 先开发票后付款如何记账?
  • 当期不得免征和抵扣税额
  • 其他综合收益属于什么科目借贷
  • 应收帐款收不回来怎么做会计分录
  • 车辆保险发票能补开吗
  • 接受捐赠的固定资产计入什么科目
  • 如何判断企业实际控制人
  • 帐簿的保管期限
  • wermgr.exe是什么进程
  • win7清除usb插拔记录
  • win8无线网受限
  • ubuntu zed
  • mac打不了字什么原因
  • auepuc.exe是什么软件
  • window10 屏幕
  • ubuntu文本编辑器命令
  • vmware 安装教程
  • win10开机黑屏进入不了系统界面
  • messengerd
  • linux yum安装软件命令
  • win8怎么设置桌面
  • opengl数据类型
  • bat定义函数
  • 使用css设置文字效果
  • 浅谈python
  • css回到页面顶部
  • node.js入门
  • 能用javascript 最终
  • 如何给税务局提供发票
  • 河南地税网上税务局
  • 差额征税全额开票是什么意思
  • 提租补贴什么标准发放
  • 赞美税务局的话
  • 国税和地税的税种有哪些
  • 年休假期间工资支付标准
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设