位置: IT常识 - 正文

语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程)

编辑:rootadmin
语义分割系列25-BiSeNetV2(pytorch实现)

推荐整理分享语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:语义分割什么意思,语义分割入门教程,语义分割常用算法,语义分割常用算法,语义分割常用算法,语义分割项目实战,语义分割segnet,语义分割入门,内容如对您有帮助,希望把文章链接给更多的朋友!

继BiSeNetV1之后(语义分割系列16-BiSeNetV1),BiSeNetV2在2021年IJCV上发布。

论文链接:BiSeNetV2

相比于V1版本,V2版本在下采样策略、卷积类型、特征融合等方面做了诸多改进。

本文将介绍:

BiSeNetV2如何设计Semantic Branch和Detail Branch。BiSeNetV2如何设计Aggregation Layer完成特征融合。BiSeNetV2如何设计Auxiliary Loss来帮助模型训练。BiSeNetV2的代码实现与应用。

目录

论文部分

引文

模型

Backbone-Detail Branch

Backbone-Semantic Branch

Aggregation Layer

分割头SegHead

Booster(auxiliary Loss)

BiSeNetV2实现以及在Camvid上应用

BiSeNetV2实现

Camvid dataset

Train

Result

论文部分引文

BiSeNetV1版本的双路分割结构在实时分割的任务中取得了不错的效果,这种网络结构能够保留低级细节和高级语义,同时又不会损害推理速度,很好的权衡了实现准确的语义分割任务和快速的推理速度之间的平衡。

因此,提出了基于双路的分段网络-BiSeNetV2来实现实时的语义分割。

相比于初版BiSeNetV1:

V2简化了原始结构,使网络更加高效使用更加紧凑的网络结构以及精心设计的组件,加深了Semantic Branch的网络,使用更加轻巧的深度可分离卷积来加速模型。设计了更为有效的Aggregation Layer,以增强Semantic Branch和Detail Branch之间的链接。

模型

首先看模型的整体结构:

图1 BiSeNetV2模型结构

 BiSeNetV2主要包含几个结构:

紫色框(backbone)内的双路分支,上为Detail Branch分支,下为Semantic Branch分支。橙色框(Aggregation Layer)内的Aggregation Layer聚合层。黄色框(Booster)内的Auxiliary Loss分支。

首先,我们先介绍紫色框backbone部分。

Backbone-Detail Branch

对于Detail Branch,依旧使用类VGG的网络结构,这一部分结构较为简单,用于快速下采样并得到细分的feature map。

代码部分如下:

import torchimport torch.nn as nnclass DetailBranch(nn.Module): def __init__(self, detail_channels=(64, 64, 128), in_channels=3): super(DetailBranch, self).__init__() self.detail_branch = nn.ModuleList() for i in range(len(detail_channels)): if i == 0: self.detail_branch.append( nn.Sequential( nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), ) ) else: self.detail_branch.append( nn.Sequential( nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU() ) ) def forward(self, x): for stage in self.detail_branch: x = stage(x) return xif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = DetailBranch(detail_channels=(64, 64, 128), in_channels=3) out = net(x) print(out.shape)Backbone-Semantic Branch语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程)

Semantic Branch与Detail Branch平行,主要用于捕获高级语义信息。在这一个分支中,通道数比较少,因为更多信息可以由Detail Branch提供。由于获取高级语义信息需要上下文的依赖和较大的感受野,所以,在这一个分支中,使用快速采样的策略来迅速扩大感受野;使用全局平均池化来嵌入上下文信息。

作者在这部分做了较为精心的设计,主要包括三部分:

Stem Block用于快速下采样;Gather-and-Expansion Layer(GE Layer)用于卷积获取细节信息。Context Embedding Block(CE Layer)用于嵌入上下文信息。

Stem Block 和CE Block结构

Stem Block和CE Block的结构较为简单。

图2 Stem Block 和CE Block结构

代码实现:

import torchimport torch.nn as nnimport torch.nn.functional as Fclass StemBlock(nn.Module): def __init__(self, in_channels=3, out_channels=16): super(StemBlock, self).__init__() self.conv_in = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv_branch = nn.Sequential( nn.Conv2d(out_channels, out_channels//2, 1), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) self.fusion = nn.Sequential( nn.Conv2d(2*out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x = self.conv_in(x) x_branch = self.conv_branch(x) x_downsample = self.pool(x) out = torch.cat([x_branch, x_downsample], dim=1) out = self.fusion(out) return outif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = StemBlock() out = net(x) print(out.shape)class CEBlock(nn.Module): def __init__(self,in_channels=16, out_channels=16): super(CEBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.gap = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的 # nn.BatchNorm2d(self.in_channels) ) self.conv_gap = nn.Sequential( nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0), # nn.BatchNorm2d(self.out_channels), 同上 nn.ReLU() ) # Note: in paper here is naive conv2d, no bn-relu self.conv_last = nn.Conv2d( in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): identity = x x = self.gap(x) x = self.conv_gap(x) x = identity + x x = self.conv_last(x) return xif __name__ == "__main__": x = torch.randn(1, 16, 224, 224) net = CEBlock() out = net(x) print(out.shape)

GE Block结构

图3 GE Block结构(b,c)

对于GE Block,分为是否进行下采样两个模块,不进行下采样的GE Block(b)和进行下采样的GE Block。作者在这里借鉴了MobileNetv2中的倒瓶颈结构设计,为了减少计算量,中间使用一个深度可分离卷积。

下面给出GE Block的代码:

import torchimport torch.nn as nnclass depthwise_separable_conv(nn.Module): def __init__(self, in_channels, out_channels, stride): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return outclass GELayer(nn.Module): def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1): super(GELayer, self).__init__() mid_channel = in_channels * exp_ratio self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1), nn.BatchNorm2d(in_channels), nn.ReLU() ) if stride == 1: self.dwconv = nn.Sequential( # ReLU in ConvModule not shown in paper nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(mid_channel), nn.ReLU(), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = None else: self.dwconv = nn.Sequential( nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False), nn.BatchNorm2d(mid_channel), nn.ReLU(), # ReLU in ConvModule not shown in paper depthwise_separable_conv(mid_channel, mid_channel, stride=stride), nn.BatchNorm2d(mid_channel), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels), ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False), nn.BatchNorm2d(out_channels) ) self.act = nn.ReLU() def forward(self, x): identity = x x = self.conv1(x) x = self.dwconv(x) x = self.conv2(x) if self.shortcut is not None: shortcut = self.shortcut(identity) x = x + shortcut else: x = x + identity x = self.act(x) return xif __name__ == "__main__": x = torch.randn(3, 16, 224, 224) net = GELayer(in_channels=16, out_channels=16, stride=2) out = net(x) print(out.shape)

Semantic Branch的代码:

class SemanticBranch(nn.Module): def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6): super(SemanticBranch, self).__init__() self.in_channels = in_channels self.semantic_channels = semantic_channels self.semantic_stages = nn.ModuleList() for i in range(len(semantic_channels)): if i == 0: self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i])) elif i == (len(semantic_channels) - 1): self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) else: self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1])) def forward(self, x): semantic_outs = [] for semantic_stage in self.semantic_stages: x = semantic_stage(x) semantic_outs.append(x) return semantic_outsif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = SemanticBranch() out = net(x) print(out[0].shape) print(out[1].shape) print(out[2].shape) print(out[3].shape) print(out[4].shape) # from torchsummary import summary # summary(net.cuda(), (3, 224, 224))Aggregation Layer

Aggregation Layer接受了Detail Branch和Semantic Branch的结果,通过图4中的一系列操作进行特征融合。

图4 Aggregation Layer结构

 代码实现:

import torchimport torch.nn as nnimport torch.nn.functional as Fclass AggregationLayer(nn.Module): def __init__(self, in_channels, out_channels): super(AggregationLayer, self).__init__() self.Conv_DetailBranch_1 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1) ) self.Conv_DetailBranch_2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) self.Conv_SemanticBranch_1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True), nn.Sigmoid() ) self.Conv_SemanticBranch_2 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), ) def forward(self, Detail_x, Semantic_x): DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x) DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x) SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x) SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x) out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1) out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2) out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True) out = torch.matmul(out_1, out_2) out = self.conv_out(out) return outif __name__ == "__main__": Detail_x = torch.randn(3, 56, 224, 224) Semantic_x = torch.randn(3, 56, 224//4, 224//4) net = AggregationLayer(in_channels=56, out_channels=122) out = net(Detail_x, Semantic_x) print(out.shape)分割头SegHead

检测头的实现比较简单。

class SegHead(nn.Module): def __init__(self, channels, num_classes): super().__init__() self.cls_seg = nn.Sequential( nn.Conv2d(channels, channels, 3, padding=1), nn.BatchNorm2d(channels), nn.ReLU(), nn.Conv2d(channels, num_classes, 1), ) def forward(self, x): return self.cls_seg(x)Booster(auxiliary Loss)

作者在Semantic Branch中引出了几个Auxiliary Loss分支,对比了集中Auxiliary Loss组合的性能,得出如下结果。

BiSeNetV2实现以及在Camvid上应用BiSeNetV2实现import torchimport torch.nn as nnimport torch.nn.functional as Fclass StemBlock(nn.Module): def __init__(self, in_channels=3, out_channels=16): super(StemBlock, self).__init__() self.conv_in = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv_branch = nn.Sequential( nn.Conv2d(out_channels, out_channels//2, 1), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) self.fusion = nn.Sequential( nn.Conv2d(2*out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x = self.conv_in(x) x_branch = self.conv_branch(x) x_downsample = self.pool(x) out = torch.cat([x_branch, x_downsample], dim=1) out = self.fusion(out) return outclass depthwise_separable_conv(nn.Module): def __init__(self, in_channels, out_channels, stride): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return outclass GELayer(nn.Module): def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1): super(GELayer, self).__init__() mid_channel = in_channels * exp_ratio self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1), nn.BatchNorm2d(in_channels), nn.ReLU() ) if stride == 1: self.dwconv = nn.Sequential( # ReLU in ConvModule not shown in paper nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(mid_channel), nn.ReLU(), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = None else: self.dwconv = nn.Sequential( nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False), nn.BatchNorm2d(mid_channel), nn.ReLU(), # ReLU in ConvModule not shown in paper depthwise_separable_conv(mid_channel, mid_channel, stride=stride), nn.BatchNorm2d(mid_channel), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels), ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False), nn.BatchNorm2d(out_channels) ) self.act = nn.ReLU() def forward(self, x): identity = x x = self.conv1(x) x = self.dwconv(x) x = self.conv2(x) if self.shortcut is not None: shortcut = self.shortcut(identity) x = x + shortcut else: x = x + identity x = self.act(x) return xclass CEBlock(nn.Module): def __init__(self,in_channels=16, out_channels=16): super(CEBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.gap = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的。如果想开启BatchNorm,训练时batch size>1即可,测试时使用model.eval()即不会报错。 # nn.BatchNorm2d(self.in_channels) ) self.conv_gap = nn.Sequential( nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0), # nn.BatchNorm2d(self.out_channels), 同上 nn.ReLU() ) # Note: in paper here is naive conv2d, no bn-relu self.conv_last = nn.Conv2d( in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): identity = x x = self.gap(x) x = self.conv_gap(x) x = identity + x x = self.conv_last(x) return xclass DetailBranch(nn.Module): def __init__(self, detail_channels=(64, 64, 128), in_channels=3): super(DetailBranch, self).__init__() self.detail_branch = nn.ModuleList() for i in range(len(detail_channels)): if i == 0: self.detail_branch.append( nn.Sequential( nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), ) ) else: self.detail_branch.append( nn.Sequential( nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU() ) ) def forward(self, x): for stage in self.detail_branch: x = stage(x) return xclass SemanticBranch(nn.Module): def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6): super(SemanticBranch, self).__init__() self.in_channels = in_channels self.semantic_channels = semantic_channels self.semantic_stages = nn.ModuleList() for i in range(len(semantic_channels)): if i == 0: self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i])) elif i == (len(semantic_channels) - 1): self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) else: self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1])) def forward(self, x): semantic_outs = [] for semantic_stage in self.semantic_stages: x = semantic_stage(x) semantic_outs.append(x) return semantic_outsclass AggregationLayer(nn.Module): def __init__(self, in_channels, out_channels): super(AggregationLayer, self).__init__() self.Conv_DetailBranch_1 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1) ) self.Conv_DetailBranch_2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) self.Conv_SemanticBranch_1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True), nn.Sigmoid() ) self.Conv_SemanticBranch_2 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), ) def forward(self, Detail_x, Semantic_x): DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x) DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x) SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x) SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x) out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1) out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2) out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True) out = torch.matmul(out_1, out_2) out = self.conv_out(out) return outclass SegHead(nn.Module): def __init__(self, channels, num_classes): super().__init__() self.cls_seg = nn.Sequential( nn.Conv2d(channels, channels, 3, padding=1), nn.BatchNorm2d(channels), nn.ReLU(), nn.Conv2d(channels, num_classes, 1), ) def forward(self, x): return self.cls_seg(x)class BiSeNetV2(nn.Module): def __init__(self,in_channels=3, detail_channels=(64, 64, 128), semantic_channels=(16, 32, 64, 128), semantic_expansion_ratio=6, aggregation_channels=128, out_indices=(0, 1, 2, 3, 4), num_classes = 3): super(BiSeNetV2, self).__init__() self.in_channels = in_channels self.detail_channels = detail_channels self.semantic_expansion_ratio = semantic_expansion_ratio self.semantic_channels = semantic_channels self.aggregation_channels = aggregation_channels self.out_indices = out_indices self.num_classes = num_classes self.detail = DetailBranch(detail_channels=self.detail_channels, in_channels=self.in_channels) self.semantic = SemanticBranch(semantic_channels=self.semantic_channels, in_channels=self.in_channels,exp_ratio=self.semantic_expansion_ratio) self.AggregationLayer = AggregationLayer(in_channels=self.aggregation_channels, out_channels=self.aggregation_channels) self.seg_head_aggre = SegHead(semantic_channels[-1], self.num_classes) self.seg_heads = nn.ModuleList() self.seg_heads.append(self.seg_head_aggre) for channel in semantic_channels: self.seg_heads.append(SegHead(channel, self.num_classes)) def forward(self, x): _, _, h, w = x.size() x_detail = self.detail(x) x_semantic_lst = self.semantic(x) x_head = self.AggregationLayer(x_detail, x_semantic_lst[-1]) outs = [x_head] + x_semantic_lst[:-1] outs = [outs[i] for i in self.out_indices] out = tuple(outs) seg_out = [] for index, stage in enumerate(self.seg_heads): seg_out.append(F.interpolate(stage(out[index]),size=(h,w), mode="bilinear", align_corners=True)) return seg_outCamvid dataset# 导入库import osos.environ['CUDA_VISIBLE_DEVICES'] = '0'os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderimport warningswarnings.filterwarnings("ignore")from PIL import Imageimport numpy as npimport albumentations as Afrom albumentations.pytorch.transforms import ToTensorV2torch.manual_seed(17)# 自定义数据集CamVidDatasetclass CamVidDataset(torch.utils.data.Dataset): """CamVid Dataset. Read images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder class_values (list): values of classes to extract from segmentation mask augmentation (albumentations.Compose): data transfromation pipeline (e.g. flip, scale, etc.) preprocessing (albumentations.Compose): data preprocessing (e.g. noralization, shape manipulation, etc.) """ def __init__(self, images_dir, masks_dir): self.transform = A.Compose([ A.Resize(448, 448), A.HorizontalFlip(), A.VerticalFlip(), A.Normalize(), ToTensorV2(), ]) self.ids = os.listdir(images_dir) self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids] self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids] def __getitem__(self, i): # read data image = np.array(Image.open(self.images_fps[i]).convert('RGB')) mask = np.array( Image.open(self.masks_fps[i]).convert('RGB')) image = self.transform(image=image,mask=mask) return image['image'], image['mask'][:,:,0] def __len__(self): return len(self.ids)# 设置数据集路径DATA_DIR = r'database/camvid/camvid/' # 根据自己的路径来设置x_train_dir = os.path.join(DATA_DIR, 'train_images')y_train_dir = os.path.join(DATA_DIR, 'train_labels')x_valid_dir = os.path.join(DATA_DIR, 'valid_images')y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')train_dataset = CamVidDataset( x_train_dir, y_train_dir, )val_dataset = CamVidDataset( x_valid_dir, y_valid_dir, )train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True,drop_last=True)val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True,drop_last=True)Trainmodel = BiSeNetV2(num_classes=33)from d2l import torch as d2lfrom tqdm import tqdmimport pandas as pdimport monai# training loop 100 epochsepochs_num = 100# 选用SGD优化器来训练optimizer = torch.optim.SGD(model.parameters(), lr=0.1)schedule = monai.optimizers.LinearLR(optimizer, end_lr=0.05, num_iter=int(epochs_num*0.75))# 损失函数选用多分类交叉熵损失函数lossf = nn.CrossEntropyLoss(ignore_index=255)def evaluate_accuracy_gpu(net, data_iter, device=None): if isinstance(net, nn.Module): net.eval() # Set the model to evaluation mode if not device: device = next(iter(net.parameters())).device # No. of correct predictions, no. of predictions metric = d2l.Accumulator(2) with torch.no_grad(): for X, y in data_iter: if isinstance(X, list): # Required for BERT Fine-tuning (to be covered later) X = [x.to(device) for x in X] else: X = X.to(device) y = y.to(device) output = net(X) pred = output[0] metric.add(d2l.accuracy(pred, y), d2l.size(y)) return metric[0] / metric[1]# 训练函数def train_ch13(net, train_iter, test_iter, loss, optimizer, num_epochs, schedule, swa_start=swa_start, devices=d2l.try_all_gpus()): timer, num_batches = d2l.Timer(), len(train_iter) animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1], legend=['train loss', 'train acc', 'test acc']) net = nn.DataParallel(net, device_ids=devices).to(devices[0]) # 用来保存一些训练参数 loss_list = [] train_acc_list = [] test_acc_list = [] epochs_list = [] time_list = [] lr_list = [] for epoch in range(num_epochs): # Sum of training loss, sum of training accuracy, no. of examples, # no. of predictions metric = d2l.Accumulator(4) for i, (X, labels) in enumerate(train_iter): timer.start() if isinstance(X, list): X = [x.to(devices[0]) for x in X] else: X = X.to(devices[0]) gt = labels.long().to(devices[0]) net.train() optimizer.zero_grad() result = net(X) pred = result[0] seg_loss = loss(result[0], gt) aux_loss_1 = loss(result[1], gt) aux_loss_2 = loss(result[2], gt) aux_loss_3 = loss(result[3], gt) aux_loss_4 = loss(result[4], gt) loss_sum = seg_loss + 0.2*aux_loss_1 + 0.2*aux_loss_2 + 0.2*aux_loss_3 + 0.2*aux_loss_4 l = loss_sum loss_sum.sum().backward() optimizer.step() acc = d2l.accuracy(pred, gt) metric.add(l, acc, labels.shape[0], labels.numel()) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3], None)) if optimizer.state_dict()['param_groups'][0]['lr']>0.05: schedule.step() test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc)) print(f"epoch {epoch+1}/{epochs_num} --- loss {metric[0] / metric[2]:.3f} --- train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- lr {optimizer.state_dict()['param_groups'][0]['lr']} --- cost time {timer.sum()}") #---------保存训练数据--------------- df = pd.DataFrame() loss_list.append(metric[0] / metric[2]) train_acc_list.append(metric[1] / metric[3]) test_acc_list.append(test_acc) epochs_list.append(epoch+1) time_list.append(timer.sum()) lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) df['epoch'] = epochs_list df['loss'] = loss_list df['train_acc'] = train_acc_list df['test_acc'] = test_acc_list df["lr"] = lr_list df['time'] = time_list df.to_excel("savefile/BiseNetv2_camvid.xlsx") #----------------保存模型------------------- if np.mod(epoch+1, 5) == 0: torch.save(net.state_dict(), f'checkpoints/BiseNetv2_{epoch+1}.pth') # 保存下最后的model torch.save(net.state_dict(), f'checkpoints/BiseNetv2_last.pth')train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num, schedule=schedule)Result

本文链接地址:https://www.jiuchutong.com/zhishi/299519.html 转载请保留说明!

上一篇:「Vue面试题」在项目中你是如何解决跨域的?(vue的常见面试题)

下一篇:GPU版本安装Pytorch教程最新方法(gpu版本的pytorch)

  • 个人所得税退付手续费是给企业还是会计
  • 人员经费包括哪些方面?
  • 进项都抵扣完了怎么办
  • 货物运输代理服务
  • 建筑行业增值税税负率计算公式
  • 其他应付款太多怎么做账务处理
  • 税务外管证取消了吗
  • 应税服务零税率是什么
  • 品质问题扣供应商款
  • 还没入库,发票已经给财务了 怎么办
  • 支付购买机器的价款
  • 以公司买房
  • 长期投资项目包括哪些
  • 房产转让的房产税怎么算
  • 社会保险差额征税的账务处理?
  • 给单位员工报销电话费怎么做账务处理
  • 商业承兑汇票是谁签发的
  • 房地产中介公司排名
  • 专家费收取多少合适
  • 有哪些方法可以判断乳剂的类型
  • 劳务费的现金流量是什么
  • 如何在Excel中进行单元格格式化?
  • 电器维修公司买什么保险
  • 家装行业如何确认收入
  • 由于找不到msvcr120.dll,无法继续执行代码什么意思
  • 前端架构怎么搭建
  • 固定资产转卖怎么开票
  • 政府财政会计核算基础是什么
  • php文件上传用什么请求方法
  • 免征个人所得税33种情形
  • 企业的罚款支出指企业的行政罚款
  • 小企业会计准则没有以前年度损益调整科目
  • 什么是收付实现制?什么是权责发生制?
  • 小规模纳税人的企业所得税税率
  • “Ninja is required to load C++ extensions”解决方案
  • 2021mathorcupc题答案
  • vue中使用原生js
  • 原材料的采购成本主要包括有?
  • 计提坏账准备的前提条件
  • 定额发票和增值税发票
  • 涉税金额是指金额还是税额
  • 转出未交增值税最终怎么转平
  • 应收票据贴现的实收金额一定小于票据面值
  • 累计盈余定义
  • 哪些税计入税金及附加
  • 单位每个月支付给个人的保洁费如何申报入账
  • 新开立银行账户怎么办理
  • 科技专项资金
  • 财产租赁合同印花税率多少
  • 企业收到返利怎么做账
  • 其他综合收益不影响当期损益
  • 合伙 利润分配
  • 产品成本核算的原则是
  • win10应用商店try that again
  • mac电脑快速查询
  • macbookzen
  • 虚拟机打开提示物理内存不足
  • win10分辨率2560*1080
  • 抢先体验的游戏可以退款吗
  • windows升级10
  • macbookpro接听苹果手机电话
  • win7自带截图工具
  • win7系统怎么设置桌面便签
  • win10查看驱动
  • cocos2d解密
  • glsl 函数
  • unity3d documentation
  • 微信小程序用户名怎么改名
  • flask框架菜鸟教程
  • jquery return
  • 猫的喵喵
  • Unity3D游戏开发标准教程
  • js二分法排序递归
  • js写表格模板
  • python *.py
  • 如何查询纳税信用等级证明
  • 专票单张限额多少
  • 微众银行企业金融客服电话多少
  • 一般纳税人销售二手车增值税税率
  • 八戒财税兼职
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设