位置: IT常识 - 正文

语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程)

编辑:rootadmin
语义分割系列25-BiSeNetV2(pytorch实现)

推荐整理分享语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:语义分割什么意思,语义分割入门教程,语义分割常用算法,语义分割常用算法,语义分割常用算法,语义分割项目实战,语义分割segnet,语义分割入门,内容如对您有帮助,希望把文章链接给更多的朋友!

继BiSeNetV1之后(语义分割系列16-BiSeNetV1),BiSeNetV2在2021年IJCV上发布。

论文链接:BiSeNetV2

相比于V1版本,V2版本在下采样策略、卷积类型、特征融合等方面做了诸多改进。

本文将介绍:

BiSeNetV2如何设计Semantic Branch和Detail Branch。BiSeNetV2如何设计Aggregation Layer完成特征融合。BiSeNetV2如何设计Auxiliary Loss来帮助模型训练。BiSeNetV2的代码实现与应用。

目录

论文部分

引文

模型

Backbone-Detail Branch

Backbone-Semantic Branch

Aggregation Layer

分割头SegHead

Booster(auxiliary Loss)

BiSeNetV2实现以及在Camvid上应用

BiSeNetV2实现

Camvid dataset

Train

Result

论文部分引文

BiSeNetV1版本的双路分割结构在实时分割的任务中取得了不错的效果,这种网络结构能够保留低级细节和高级语义,同时又不会损害推理速度,很好的权衡了实现准确的语义分割任务和快速的推理速度之间的平衡。

因此,提出了基于双路的分段网络-BiSeNetV2来实现实时的语义分割。

相比于初版BiSeNetV1:

V2简化了原始结构,使网络更加高效使用更加紧凑的网络结构以及精心设计的组件,加深了Semantic Branch的网络,使用更加轻巧的深度可分离卷积来加速模型。设计了更为有效的Aggregation Layer,以增强Semantic Branch和Detail Branch之间的链接。

模型

首先看模型的整体结构:

图1 BiSeNetV2模型结构

 BiSeNetV2主要包含几个结构:

紫色框(backbone)内的双路分支,上为Detail Branch分支,下为Semantic Branch分支。橙色框(Aggregation Layer)内的Aggregation Layer聚合层。黄色框(Booster)内的Auxiliary Loss分支。

首先,我们先介绍紫色框backbone部分。

Backbone-Detail Branch

对于Detail Branch,依旧使用类VGG的网络结构,这一部分结构较为简单,用于快速下采样并得到细分的feature map。

代码部分如下:

import torchimport torch.nn as nnclass DetailBranch(nn.Module): def __init__(self, detail_channels=(64, 64, 128), in_channels=3): super(DetailBranch, self).__init__() self.detail_branch = nn.ModuleList() for i in range(len(detail_channels)): if i == 0: self.detail_branch.append( nn.Sequential( nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), ) ) else: self.detail_branch.append( nn.Sequential( nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU() ) ) def forward(self, x): for stage in self.detail_branch: x = stage(x) return xif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = DetailBranch(detail_channels=(64, 64, 128), in_channels=3) out = net(x) print(out.shape)Backbone-Semantic Branch语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程)

Semantic Branch与Detail Branch平行,主要用于捕获高级语义信息。在这一个分支中,通道数比较少,因为更多信息可以由Detail Branch提供。由于获取高级语义信息需要上下文的依赖和较大的感受野,所以,在这一个分支中,使用快速采样的策略来迅速扩大感受野;使用全局平均池化来嵌入上下文信息。

作者在这部分做了较为精心的设计,主要包括三部分:

Stem Block用于快速下采样;Gather-and-Expansion Layer(GE Layer)用于卷积获取细节信息。Context Embedding Block(CE Layer)用于嵌入上下文信息。

Stem Block 和CE Block结构

Stem Block和CE Block的结构较为简单。

图2 Stem Block 和CE Block结构

代码实现:

import torchimport torch.nn as nnimport torch.nn.functional as Fclass StemBlock(nn.Module): def __init__(self, in_channels=3, out_channels=16): super(StemBlock, self).__init__() self.conv_in = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv_branch = nn.Sequential( nn.Conv2d(out_channels, out_channels//2, 1), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) self.fusion = nn.Sequential( nn.Conv2d(2*out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x = self.conv_in(x) x_branch = self.conv_branch(x) x_downsample = self.pool(x) out = torch.cat([x_branch, x_downsample], dim=1) out = self.fusion(out) return outif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = StemBlock() out = net(x) print(out.shape)class CEBlock(nn.Module): def __init__(self,in_channels=16, out_channels=16): super(CEBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.gap = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的 # nn.BatchNorm2d(self.in_channels) ) self.conv_gap = nn.Sequential( nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0), # nn.BatchNorm2d(self.out_channels), 同上 nn.ReLU() ) # Note: in paper here is naive conv2d, no bn-relu self.conv_last = nn.Conv2d( in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): identity = x x = self.gap(x) x = self.conv_gap(x) x = identity + x x = self.conv_last(x) return xif __name__ == "__main__": x = torch.randn(1, 16, 224, 224) net = CEBlock() out = net(x) print(out.shape)

GE Block结构

图3 GE Block结构(b,c)

对于GE Block,分为是否进行下采样两个模块,不进行下采样的GE Block(b)和进行下采样的GE Block。作者在这里借鉴了MobileNetv2中的倒瓶颈结构设计,为了减少计算量,中间使用一个深度可分离卷积。

下面给出GE Block的代码:

import torchimport torch.nn as nnclass depthwise_separable_conv(nn.Module): def __init__(self, in_channels, out_channels, stride): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return outclass GELayer(nn.Module): def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1): super(GELayer, self).__init__() mid_channel = in_channels * exp_ratio self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1), nn.BatchNorm2d(in_channels), nn.ReLU() ) if stride == 1: self.dwconv = nn.Sequential( # ReLU in ConvModule not shown in paper nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(mid_channel), nn.ReLU(), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = None else: self.dwconv = nn.Sequential( nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False), nn.BatchNorm2d(mid_channel), nn.ReLU(), # ReLU in ConvModule not shown in paper depthwise_separable_conv(mid_channel, mid_channel, stride=stride), nn.BatchNorm2d(mid_channel), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels), ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False), nn.BatchNorm2d(out_channels) ) self.act = nn.ReLU() def forward(self, x): identity = x x = self.conv1(x) x = self.dwconv(x) x = self.conv2(x) if self.shortcut is not None: shortcut = self.shortcut(identity) x = x + shortcut else: x = x + identity x = self.act(x) return xif __name__ == "__main__": x = torch.randn(3, 16, 224, 224) net = GELayer(in_channels=16, out_channels=16, stride=2) out = net(x) print(out.shape)

Semantic Branch的代码:

class SemanticBranch(nn.Module): def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6): super(SemanticBranch, self).__init__() self.in_channels = in_channels self.semantic_channels = semantic_channels self.semantic_stages = nn.ModuleList() for i in range(len(semantic_channels)): if i == 0: self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i])) elif i == (len(semantic_channels) - 1): self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) else: self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1])) def forward(self, x): semantic_outs = [] for semantic_stage in self.semantic_stages: x = semantic_stage(x) semantic_outs.append(x) return semantic_outsif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = SemanticBranch() out = net(x) print(out[0].shape) print(out[1].shape) print(out[2].shape) print(out[3].shape) print(out[4].shape) # from torchsummary import summary # summary(net.cuda(), (3, 224, 224))Aggregation Layer

Aggregation Layer接受了Detail Branch和Semantic Branch的结果,通过图4中的一系列操作进行特征融合。

图4 Aggregation Layer结构

 代码实现:

import torchimport torch.nn as nnimport torch.nn.functional as Fclass AggregationLayer(nn.Module): def __init__(self, in_channels, out_channels): super(AggregationLayer, self).__init__() self.Conv_DetailBranch_1 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1) ) self.Conv_DetailBranch_2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) self.Conv_SemanticBranch_1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True), nn.Sigmoid() ) self.Conv_SemanticBranch_2 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), ) def forward(self, Detail_x, Semantic_x): DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x) DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x) SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x) SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x) out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1) out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2) out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True) out = torch.matmul(out_1, out_2) out = self.conv_out(out) return outif __name__ == "__main__": Detail_x = torch.randn(3, 56, 224, 224) Semantic_x = torch.randn(3, 56, 224//4, 224//4) net = AggregationLayer(in_channels=56, out_channels=122) out = net(Detail_x, Semantic_x) print(out.shape)分割头SegHead

检测头的实现比较简单。

class SegHead(nn.Module): def __init__(self, channels, num_classes): super().__init__() self.cls_seg = nn.Sequential( nn.Conv2d(channels, channels, 3, padding=1), nn.BatchNorm2d(channels), nn.ReLU(), nn.Conv2d(channels, num_classes, 1), ) def forward(self, x): return self.cls_seg(x)Booster(auxiliary Loss)

作者在Semantic Branch中引出了几个Auxiliary Loss分支,对比了集中Auxiliary Loss组合的性能,得出如下结果。

BiSeNetV2实现以及在Camvid上应用BiSeNetV2实现import torchimport torch.nn as nnimport torch.nn.functional as Fclass StemBlock(nn.Module): def __init__(self, in_channels=3, out_channels=16): super(StemBlock, self).__init__() self.conv_in = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv_branch = nn.Sequential( nn.Conv2d(out_channels, out_channels//2, 1), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) self.fusion = nn.Sequential( nn.Conv2d(2*out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x = self.conv_in(x) x_branch = self.conv_branch(x) x_downsample = self.pool(x) out = torch.cat([x_branch, x_downsample], dim=1) out = self.fusion(out) return outclass depthwise_separable_conv(nn.Module): def __init__(self, in_channels, out_channels, stride): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return outclass GELayer(nn.Module): def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1): super(GELayer, self).__init__() mid_channel = in_channels * exp_ratio self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1), nn.BatchNorm2d(in_channels), nn.ReLU() ) if stride == 1: self.dwconv = nn.Sequential( # ReLU in ConvModule not shown in paper nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(mid_channel), nn.ReLU(), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = None else: self.dwconv = nn.Sequential( nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False), nn.BatchNorm2d(mid_channel), nn.ReLU(), # ReLU in ConvModule not shown in paper depthwise_separable_conv(mid_channel, mid_channel, stride=stride), nn.BatchNorm2d(mid_channel), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels), ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False), nn.BatchNorm2d(out_channels) ) self.act = nn.ReLU() def forward(self, x): identity = x x = self.conv1(x) x = self.dwconv(x) x = self.conv2(x) if self.shortcut is not None: shortcut = self.shortcut(identity) x = x + shortcut else: x = x + identity x = self.act(x) return xclass CEBlock(nn.Module): def __init__(self,in_channels=16, out_channels=16): super(CEBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.gap = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的。如果想开启BatchNorm,训练时batch size>1即可,测试时使用model.eval()即不会报错。 # nn.BatchNorm2d(self.in_channels) ) self.conv_gap = nn.Sequential( nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0), # nn.BatchNorm2d(self.out_channels), 同上 nn.ReLU() ) # Note: in paper here is naive conv2d, no bn-relu self.conv_last = nn.Conv2d( in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): identity = x x = self.gap(x) x = self.conv_gap(x) x = identity + x x = self.conv_last(x) return xclass DetailBranch(nn.Module): def __init__(self, detail_channels=(64, 64, 128), in_channels=3): super(DetailBranch, self).__init__() self.detail_branch = nn.ModuleList() for i in range(len(detail_channels)): if i == 0: self.detail_branch.append( nn.Sequential( nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), ) ) else: self.detail_branch.append( nn.Sequential( nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU() ) ) def forward(self, x): for stage in self.detail_branch: x = stage(x) return xclass SemanticBranch(nn.Module): def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6): super(SemanticBranch, self).__init__() self.in_channels = in_channels self.semantic_channels = semantic_channels self.semantic_stages = nn.ModuleList() for i in range(len(semantic_channels)): if i == 0: self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i])) elif i == (len(semantic_channels) - 1): self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) else: self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1])) def forward(self, x): semantic_outs = [] for semantic_stage in self.semantic_stages: x = semantic_stage(x) semantic_outs.append(x) return semantic_outsclass AggregationLayer(nn.Module): def __init__(self, in_channels, out_channels): super(AggregationLayer, self).__init__() self.Conv_DetailBranch_1 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1) ) self.Conv_DetailBranch_2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) self.Conv_SemanticBranch_1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True), nn.Sigmoid() ) self.Conv_SemanticBranch_2 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), ) def forward(self, Detail_x, Semantic_x): DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x) DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x) SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x) SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x) out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1) out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2) out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True) out = torch.matmul(out_1, out_2) out = self.conv_out(out) return outclass SegHead(nn.Module): def __init__(self, channels, num_classes): super().__init__() self.cls_seg = nn.Sequential( nn.Conv2d(channels, channels, 3, padding=1), nn.BatchNorm2d(channels), nn.ReLU(), nn.Conv2d(channels, num_classes, 1), ) def forward(self, x): return self.cls_seg(x)class BiSeNetV2(nn.Module): def __init__(self,in_channels=3, detail_channels=(64, 64, 128), semantic_channels=(16, 32, 64, 128), semantic_expansion_ratio=6, aggregation_channels=128, out_indices=(0, 1, 2, 3, 4), num_classes = 3): super(BiSeNetV2, self).__init__() self.in_channels = in_channels self.detail_channels = detail_channels self.semantic_expansion_ratio = semantic_expansion_ratio self.semantic_channels = semantic_channels self.aggregation_channels = aggregation_channels self.out_indices = out_indices self.num_classes = num_classes self.detail = DetailBranch(detail_channels=self.detail_channels, in_channels=self.in_channels) self.semantic = SemanticBranch(semantic_channels=self.semantic_channels, in_channels=self.in_channels,exp_ratio=self.semantic_expansion_ratio) self.AggregationLayer = AggregationLayer(in_channels=self.aggregation_channels, out_channels=self.aggregation_channels) self.seg_head_aggre = SegHead(semantic_channels[-1], self.num_classes) self.seg_heads = nn.ModuleList() self.seg_heads.append(self.seg_head_aggre) for channel in semantic_channels: self.seg_heads.append(SegHead(channel, self.num_classes)) def forward(self, x): _, _, h, w = x.size() x_detail = self.detail(x) x_semantic_lst = self.semantic(x) x_head = self.AggregationLayer(x_detail, x_semantic_lst[-1]) outs = [x_head] + x_semantic_lst[:-1] outs = [outs[i] for i in self.out_indices] out = tuple(outs) seg_out = [] for index, stage in enumerate(self.seg_heads): seg_out.append(F.interpolate(stage(out[index]),size=(h,w), mode="bilinear", align_corners=True)) return seg_outCamvid dataset# 导入库import osos.environ['CUDA_VISIBLE_DEVICES'] = '0'os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderimport warningswarnings.filterwarnings("ignore")from PIL import Imageimport numpy as npimport albumentations as Afrom albumentations.pytorch.transforms import ToTensorV2torch.manual_seed(17)# 自定义数据集CamVidDatasetclass CamVidDataset(torch.utils.data.Dataset): """CamVid Dataset. Read images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder class_values (list): values of classes to extract from segmentation mask augmentation (albumentations.Compose): data transfromation pipeline (e.g. flip, scale, etc.) preprocessing (albumentations.Compose): data preprocessing (e.g. noralization, shape manipulation, etc.) """ def __init__(self, images_dir, masks_dir): self.transform = A.Compose([ A.Resize(448, 448), A.HorizontalFlip(), A.VerticalFlip(), A.Normalize(), ToTensorV2(), ]) self.ids = os.listdir(images_dir) self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids] self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids] def __getitem__(self, i): # read data image = np.array(Image.open(self.images_fps[i]).convert('RGB')) mask = np.array( Image.open(self.masks_fps[i]).convert('RGB')) image = self.transform(image=image,mask=mask) return image['image'], image['mask'][:,:,0] def __len__(self): return len(self.ids)# 设置数据集路径DATA_DIR = r'database/camvid/camvid/' # 根据自己的路径来设置x_train_dir = os.path.join(DATA_DIR, 'train_images')y_train_dir = os.path.join(DATA_DIR, 'train_labels')x_valid_dir = os.path.join(DATA_DIR, 'valid_images')y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')train_dataset = CamVidDataset( x_train_dir, y_train_dir, )val_dataset = CamVidDataset( x_valid_dir, y_valid_dir, )train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True,drop_last=True)val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True,drop_last=True)Trainmodel = BiSeNetV2(num_classes=33)from d2l import torch as d2lfrom tqdm import tqdmimport pandas as pdimport monai# training loop 100 epochsepochs_num = 100# 选用SGD优化器来训练optimizer = torch.optim.SGD(model.parameters(), lr=0.1)schedule = monai.optimizers.LinearLR(optimizer, end_lr=0.05, num_iter=int(epochs_num*0.75))# 损失函数选用多分类交叉熵损失函数lossf = nn.CrossEntropyLoss(ignore_index=255)def evaluate_accuracy_gpu(net, data_iter, device=None): if isinstance(net, nn.Module): net.eval() # Set the model to evaluation mode if not device: device = next(iter(net.parameters())).device # No. of correct predictions, no. of predictions metric = d2l.Accumulator(2) with torch.no_grad(): for X, y in data_iter: if isinstance(X, list): # Required for BERT Fine-tuning (to be covered later) X = [x.to(device) for x in X] else: X = X.to(device) y = y.to(device) output = net(X) pred = output[0] metric.add(d2l.accuracy(pred, y), d2l.size(y)) return metric[0] / metric[1]# 训练函数def train_ch13(net, train_iter, test_iter, loss, optimizer, num_epochs, schedule, swa_start=swa_start, devices=d2l.try_all_gpus()): timer, num_batches = d2l.Timer(), len(train_iter) animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1], legend=['train loss', 'train acc', 'test acc']) net = nn.DataParallel(net, device_ids=devices).to(devices[0]) # 用来保存一些训练参数 loss_list = [] train_acc_list = [] test_acc_list = [] epochs_list = [] time_list = [] lr_list = [] for epoch in range(num_epochs): # Sum of training loss, sum of training accuracy, no. of examples, # no. of predictions metric = d2l.Accumulator(4) for i, (X, labels) in enumerate(train_iter): timer.start() if isinstance(X, list): X = [x.to(devices[0]) for x in X] else: X = X.to(devices[0]) gt = labels.long().to(devices[0]) net.train() optimizer.zero_grad() result = net(X) pred = result[0] seg_loss = loss(result[0], gt) aux_loss_1 = loss(result[1], gt) aux_loss_2 = loss(result[2], gt) aux_loss_3 = loss(result[3], gt) aux_loss_4 = loss(result[4], gt) loss_sum = seg_loss + 0.2*aux_loss_1 + 0.2*aux_loss_2 + 0.2*aux_loss_3 + 0.2*aux_loss_4 l = loss_sum loss_sum.sum().backward() optimizer.step() acc = d2l.accuracy(pred, gt) metric.add(l, acc, labels.shape[0], labels.numel()) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3], None)) if optimizer.state_dict()['param_groups'][0]['lr']>0.05: schedule.step() test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc)) print(f"epoch {epoch+1}/{epochs_num} --- loss {metric[0] / metric[2]:.3f} --- train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- lr {optimizer.state_dict()['param_groups'][0]['lr']} --- cost time {timer.sum()}") #---------保存训练数据--------------- df = pd.DataFrame() loss_list.append(metric[0] / metric[2]) train_acc_list.append(metric[1] / metric[3]) test_acc_list.append(test_acc) epochs_list.append(epoch+1) time_list.append(timer.sum()) lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) df['epoch'] = epochs_list df['loss'] = loss_list df['train_acc'] = train_acc_list df['test_acc'] = test_acc_list df["lr"] = lr_list df['time'] = time_list df.to_excel("savefile/BiseNetv2_camvid.xlsx") #----------------保存模型------------------- if np.mod(epoch+1, 5) == 0: torch.save(net.state_dict(), f'checkpoints/BiseNetv2_{epoch+1}.pth') # 保存下最后的model torch.save(net.state_dict(), f'checkpoints/BiseNetv2_last.pth')train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num, schedule=schedule)Result

本文链接地址:https://www.jiuchutong.com/zhishi/299519.html 转载请保留说明!

上一篇:「Vue面试题」在项目中你是如何解决跨域的?(vue的常见面试题)

下一篇:GPU版本安装Pytorch教程最新方法(gpu版本的pytorch)

  • 哔哩哔哩邀请码怎么用(哔哩哔哩邀请码怎么获得)(哔哩哔哩邀请码在哪里领)

    哔哩哔哩邀请码怎么用(哔哩哔哩邀请码怎么获得)(哔哩哔哩邀请码在哪里领)

  • 小米手表color2可以下载微信吗(小米手表Color2可以和其他手机)

    小米手表color2可以下载微信吗(小米手表Color2可以和其他手机)

  • 小米手环6怎么换自定义壁纸(小米手环6怎么调时间)

    小米手环6怎么换自定义壁纸(小米手环6怎么调时间)

  • 新开的手机号被别人注册了微信怎么办(新开的手机号被注册了抖音)

    新开的手机号被别人注册了微信怎么办(新开的手机号被注册了抖音)

  • wifi干扰严重解决办法(wi-fi干扰)

    wifi干扰严重解决办法(wi-fi干扰)

  • 华为p40怎么分屏(华为p40怎么分屏一半一半)

    华为p40怎么分屏(华为p40怎么分屏一半一半)

  • 苹果充电接口检测到液体(苹果充电接口检测到有液体用吹风机)

    苹果充电接口检测到液体(苹果充电接口检测到有液体用吹风机)

  • mate20和mate30区别(mate20和mate30区别大吗)

    mate20和mate30区别(mate20和mate30区别大吗)

  • 微信朋友圈限流规则(微信朋友圈限流是什么意思)

    微信朋友圈限流规则(微信朋友圈限流是什么意思)

  • oppo手机内存不足怎么清理(oppo手机内存不足怎么办)

    oppo手机内存不足怎么清理(oppo手机内存不足怎么办)

  • 苹果a10和a8x性能差距(苹果a8x处理器和a10处理器哪个好)

    苹果a10和a8x性能差距(苹果a8x处理器和a10处理器哪个好)

  • iphone8听筒有杂音滋滋(iphone8听筒有杂音)

    iphone8听筒有杂音滋滋(iphone8听筒有杂音)

  • vivo淘宝分身版在哪下载(vivo手机淘宝分身)

    vivo淘宝分身版在哪下载(vivo手机淘宝分身)

  • 抖音可以随便定位吗(抖音可以随便定位多少公里)

    抖音可以随便定位吗(抖音可以随便定位多少公里)

  • html怎么居中(html怎么居中文字并改变颜色)

    html怎么居中(html怎么居中文字并改变颜色)

  • 手机qq版怎么一键删好友(在手机qq)

    手机qq版怎么一键删好友(在手机qq)

  • vivox27是否防水(vivox27防水吗视频)

    vivox27是否防水(vivox27防水吗视频)

  • 手机通话语音会保留吗(手机通话语音会中断吗)

    手机通话语音会保留吗(手机通话语音会中断吗)

  • vivos1有红外吗(vivo s1有红外遥控功能吗)

    vivos1有红外吗(vivo s1有红外遥控功能吗)

  • 文档改写功能怎么关(文档里改写形式如何换成编辑)

    文档改写功能怎么关(文档里改写形式如何换成编辑)

  • 苹果手机坏了去哪修(苹果手机坏了去售后需要什么手续)

    苹果手机坏了去哪修(苹果手机坏了去售后需要什么手续)

  • ios12壁纸怎么缩放(苹果12壁纸尺寸怎么调)

    ios12壁纸怎么缩放(苹果12壁纸尺寸怎么调)

  • 如何进行网速测试光纤?有什么好办法?(如何进行网速测试设置)

    如何进行网速测试光纤?有什么好办法?(如何进行网速测试设置)

  • 如何在Win11中添加无线打印机?Win11中添加无线打印机操作方法(windows 11怎么用)

    如何在Win11中添加无线打印机?Win11中添加无线打印机操作方法(windows 11怎么用)

  • 初级职称经济法基础重点
  • 账账核对的基本内容
  • 未开票收入如何红冲
  • 未到账的银行存款怎么取
  • 发票上的收款人负法律责任吗
  • 增值税发票9个点和13个点区别
  • 企业购进软件系统后如何做账
  • 残保金需要计提分录吗
  • 资产负债表日后调整事项与非调整事项的区别
  • 客观原因导致的没见过世面
  • 预收账款有余额是啥原因
  • 包工包料挣钱吗
  • 有形动产租赁服务
  • 公司办理食品许可证
  • 固定资产报废变卖收入缴税账务处理
  • 确认应收账款不确认收入
  • 其他综合收益包含哪些科目
  • 发票有误多交的钱怎么办
  • 什么是法?法的本质特征是什么
  • 营改增个体工商户优惠政策
  • 房租增值税专用发票和普通发票的税率
  • 小微企业增值税收优惠政策
  • 车间扫帚存放架子
  • 外币结算方式有哪几种
  • 生产性生物资产包括哪些
  • 收回固定资产残值
  • 财务费用中的利息收入指什么
  • 失控发票如何转出
  • 研发用的原材料怎么开领料单
  • 主营业务收入需要交增值税吗
  • 结转完工产品成本的计算
  • 高新技术研发人员比例
  • 结转人工费会计分录
  • 无法添加用户和组
  • linux硬件设备分为
  • 申请开立临时存款账户
  • 工会经费申报表填写说明
  • thinkphp excel
  • 税控盘是干什么用的操作有风险吗
  • 政府会计制度下财务会计包含几要素
  • composer环境变量
  • 发生广告费的会计分录
  • 收付控制状态不正常
  • 如何正确配置防火墙安全策略
  • 固定资产怎么确认价值
  • 六税一费和六税两费的区别
  • 财务负责人需要工商登记吗
  • 发票税率开错了3%开成5%怎么办?
  • 固定资产清理的含义
  • 开发成本属于哪一类科目
  • 工程建设项目融资方式有哪些
  • 记账金额错误
  • 承租人和共同承租人
  • 残保金计算公式2023年
  • 住宿发票项目有哪些
  • 现汇账户和现钞账户
  • 简述什么是实收资本
  • win7系统软件安装就闪退怎么办
  • centos 界面安装
  • 2019谷歌浏览器
  • msmpeng.exe是什么程序
  • win8 系统设置
  • win8丢失msvcp140.dll的解决办法
  • react增删改查功能
  • cocos2dx官方教程
  • 安卓核心架构
  • 文件夹如何取名字
  • 行为怪异的人有问题吗
  • python实现mysql的单引号字符串过滤方法
  • unity3d跨平台
  • 北京天然气收费标准2024年
  • 不用税控盘可以勾选发票吗
  • 四川国税网上办税
  • 税务监察室具体工作内容
  • 税收科研工作思路
  • 北京身份证网上换证流程
  • 全年个人一次性奖金单独计税优惠
  • 建筑工程招标代理服务费
  • 抄报税怎么弄
  • 2020十大经济年度人物揭晓
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设