位置: IT常识 - 正文

python爬取网站数据(含代码和讲解)(python爬取网站数据毕业论文)

编辑:rootadmin
python爬取网站数据(含代码和讲解)

推荐整理分享python爬取网站数据(含代码和讲解)(python爬取网站数据毕业论文),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:Python爬取网站数据库技巧,python爬取网站数据并导入excel,python爬取网站数据毕业论文,python爬取网站数据,python爬取网站数据并做成表格,python爬取网站数据,python爬取网站数据,python爬取网站数据,内容如对您有帮助,希望把文章链接给更多的朋友!

提示:本次爬取是利用xpath进行,按文章的顺序走就OK的;

文章目录

前言

一、数据采集的准备

1.观察url规律

2.设定爬取位置和路径(xpath)

二、数据采集

1. 建立存放数据的dataframe

2. 开始爬取

3. 把数据导出成csv表格

总结


前言

这次爬取的网站是房天下网站;

其中包含很多楼盘信息:https://newhouse.fang.com/house/s/b81-b91/

我在网站上进行了一步筛选,即选取北京及北京周边的房源,各位要是想爬取其他城市的房源信息也很简单,改一下url信息即可。

一、数据采集的准备1.观察url规律

观察到北京及周边地区的房源有很多网页,翻几页就能发现url的规律:

网址就是:https://newhouse.fang.com/house/s/  +  b81-b9X  +  /   ;其中X是页码

 利用for循环遍历所有网页:

for i in range(33): # 每页20个小区,共648个小区 url = 'https://newhouse.fang.com/house/s/b81-b9' + str(i+1) + '/'

pip 安装fake_useragent库:

fake-useragent可以伪装生成headers请求头中的User Agent值,将爬虫伪装成浏览器正常操作。

!pip install fake_useragent

导入接下来会用到的包: 

## 导包from lxml import etreeimport requestsfrom fake_useragent import UserAgentimport pandas as pdimport randomimport timeimport csv设置请求参数:需要大家替换的有'cookie'和'referer'两项的值:python爬取网站数据(含代码和讲解)(python爬取网站数据毕业论文)

'cookie':每次访问网站服务器的时候,服务器都会在本地设置cookie,表明访问者的身份。记得每次使用时,都要按照固定方法人工填入一个 cookie。

 'referer':请求参数,标识请求是从哪个页面过来的。

# 设置请求头参数:User-Agent, cookie, refererheaders = { 'User-Agent' : UserAgent().random, 'cookie' : "global_cookie=kxyzkfz09n3hnn14le9z39b9g3ol3wgikwn; city=www; city.sig=OGYSb1kOr8YVFH0wBEXukpoi1DeOqwvdseB7aTrJ-zE; __utmz=147393320.1664372701.10.4.utmcsr=mp.csdn.net|utmccn=(referral)|utmcmd=referral|utmcct=/mp_blog/creation/editor; csrfToken=KUlWFFT_pcJiH1yo3qPmzIc_; g_sourcepage=xf_lp^lb_pc'; __utmc=147393320; unique_cookie=U_bystp5cfehunxkbjybklkryt62fl8mfox4z*3; __utma=147393320.97036532.1606372168.1664431058.1664433514.14; __utmt_t0=1; __utmt_t1=1; __utmt_t2=1; __utmt_t3=1; __utmt_t4=1; __utmb=147393320.5.10.1664433514", # 设置从何处跳转过来 'referer': 'https://newhouse.fang.com/house/s/b81-b91/'}

具体更改方法请见链接:

【腾讯文档】'cookie'和 'referer'的更改方法:https://docs.qq.com/doc/DR2RzUkJTQXJ5ZGt6

只能走链接了,一直审核不过555~ 

2.设定爬取位置和路径(xpath)

因为爬取数据主要依托于'目标数据所在位置的确定’,所以一定先要搞清楚目标数据的位置(位于div的哪一块);

先发送请求: 

url = 'https://newhouse.fang.com/house/s/b81-b91/'# 首页网址URLpage_text = requests.get(url=url, headers=headers).text# 请求发送tree = etree.HTML(page_text)#数据解析

我想爬取的数据主要就是:楼盘名称、评论数、房屋面积、详细地址、所在区域、均价 5项数据。

代码已经贴在下面了,具体方法描述还是走个链接: 

【腾讯文档】获取具体爬取位置的讲解https://docs.qq.com/doc/DR3BFRW1lVGFRU0Na

# 小区名称name = [i.strip() for i in tree.xpath("//div[@class='nlcd_name']/a/text()")]print(name)print(len(name))# 评论数commentCounts = tree.xpath("//span[@class='value_num']/text()")print(commentCounts)print(len(commentCounts))# 房屋面积buildingarea = [i.strip() for i in tree.xpath("//div[@class='house_type clearfix']/text()")]print(buildingarea)print(len(buildingarea))# 详细地址detailAddress = tree.xpath("//div[@class='address']/a/@title")print(detailAddress)print(len(detailAddress))# 所在区district = [i.strip() for i in tree.xpath("//div[@class='address']//span[@class='sngrey']/text()")]print(district)print(len(district))# 均价num = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/span/text() | //div[@class='nlc_details']/div[@class='nhouse_price']/i/text()")unit = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/em/text()")price = [i+j for i,j in zip(num, unit)]print(price)print(len(price))

此时采集到的数据还包含着:[]方括号、—横杠、“平米”等符号或者单位,所以要对数据进行简单的split处理,把真正需要的数据提取出来:

# 评论数处理commentCounts = [int(i.split('(')[1].split('条')[0]) for i in commentCounts]print(commentCounts)# 详细地址处理detailAddress = [i.split(']')[1] for i in detailAddress]print(detailAddress)# 所在区字段处理district = [i.split('[')[1].split(']')[0] for i in district]print(district)# 房屋面积处理t = []for i in buildingarea: if i != '/' and i != '': t.append(i.split('—')[1].split('平米')[0])print(t)print(len(t))二、数据采集1. 建立存放数据的dataframedf = pd.DataFrame(columns = ['小区名称', '详细地址', '所在区', '均价', '评论数'])df2. 开始爬取

这里图方便就只爬取了前10页,因为后面的房源就经常少信息,要么没有面积信息,要么没有所在区域。 

for k in range(10): url = 'https://newhouse.fang.com/house/s/b81-b9' + str(k+1) + '/' page_text = requests.get(url=url, headers=headers).text #请求发送 tree = etree.HTML(page_text) #数据解析 # 小区名称 name = [i.strip() for i in tree.xpath("//div[@class='nlcd_name']/a/text()")] # 评论数 commentCounts = tree.xpath("//span[@class='value_num']/text()") # 详细地址 detailAddress = tree.xpath("//div[@class='address']/a/@title") # 所在区 district = [i.strip() for i in tree.xpath("//div[@class='address']//text()")] # 均价 num = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/span/text() | //div[@class='nlc_details']/div[@class='nhouse_price']/i/text()") unit = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/em/text()") price = [i+j for i,j in zip(num, unit)] #评论数处理 commentCounts = [int(i.split('(')[1].split('条')[0]) for i in commentCounts] #详细地址处理 tmp1 = [] for i in detailAddress: if ']' in i: tmp1.append(i.split(']')[1]) continue tmp1.append(i) detailAddress = tmp1 #所在区处理 tmp2 = [] for i in district: if ']' in i and '[' in i: tmp2.append(i.split(']')[0].split('[')[1]) district = tmp2 dic = {'小区名称':name, '详细地址':detailAddress, '所在区':district, '均价':price, '评论数':commentCounts} df2 = pd.DataFrame(dic) df = pd.concat([df,df2], axis=0) print('第{}页爬取成功, 共{}条数据'.format(k+1, len(df2)))print('全部数据爬取成功')3. 把数据导出成csv表格df.to_csv('北京小区数据信息.csv',index=None)

总结

说实话,本文使用的爬取方法简单而且信息正确,但是存在一些不足,比如面对楼盘的部分信息空缺时,就无法按照null来采集,而是会报错,所以我现有的解决方法就是在循环中人工去设置条件,跳过空缺信息。

我会继续优化这个方法的~

本文链接地址:https://www.jiuchutong.com/zhishi/299051.html 转载请保留说明!

上一篇:从零开始,三分钟内用Python快速自建一个私有化 ChatGpt 聊天机器人网站(从零开始文章)

下一篇:Vue3中 内置组件 Teleport 详解(vue的内置组件)

  • 离职人员补发工资怎么做账
  • 分公司上交总公司营业款如何记账
  • 按月支付劳务费开发票
  • 城建税的税目是哪些
  • 上个季度财务报表已申报,可以更正吗
  • 进项认证勾选在哪里操作
  • 电子设备残值率的最新规定
  • 在本公司交社保辞职了还能交吗
  • 个体办税务登记需要带什么
  • 开票方没缴税咋办
  • 个体户查账征收怎么交税?
  • 增值税税率调整时间17变16
  • 企业所得税扣除项目及标准
  • 应收账款多久收回合适
  • 认缴制下实收资本印花税
  • 小规模纳税人金额
  • 春节公司发福利买什么东西
  • 什么情况下税务会查账
  • 滴滴普票可以抵扣进项么
  • 应收账款确认无法收回
  • 税务局返还的个税手续费需要缴纳增值税吗
  • 减免的城建税如何申报
  • win7安装sqlserver2008
  • 电脑折旧率计算公式
  • 贷款本息转本金
  • 商品购进核算
  • 福利企业即征即退优惠政策
  • 财务新手要注意哪些事项
  • 家里有蟑螂怎么找到窝
  • 工业总产值 工业销售产值
  • 独立核算分公司和非独立核算分公司
  • PHP中使用什么关键字声明变量的作用域为全局
  • 出口的发票怎么开视频
  • 科大讯飞语音识别主要产品
  • 出差托运行李公司报销吗
  • python中如何创建一个新文件
  • 织梦专题页模板
  • 所得税汇算清缴退税会计分录怎么做
  • 医用耗材税率是多少
  • 2021年发票认证期限为多少天
  • 企业内部研发支持方案
  • 去银行打对账单和回执单需要拿什么
  • 修改数据库为多个数据
  • 企业所得税年度纳税申报表A类怎么填
  • 货物出口销售确认流程
  • 电费已支付未充值
  • 已认证抵扣的发票如何红字信息表
  • 控股合并和吸收合并会计处理的区别
  • 购货方收到销售折扣发票怎么入账
  • 事业单位项目结算审计报告
  • 冲销预付账款后怎么做账
  • 原材料暂估差异调整
  • 出口确认收入的时间
  • 租赁行业的成本
  • 总公司中标走子公司账户违法吗
  • 一件产品在不同场合的价格
  • 手写发票还能用么
  • 残保金计算人数1.02怎么计算
  • 修改mysql用户权限
  • mysql两个表连接
  • vista windows
  • win10右键自动弹出
  • centos环境搭建
  • win7如何查看图片的rgb
  • win8如何更新驱动
  • win7系统ie浏览器打不开
  • centos进入指定目录
  • netfilter/iptables模块编译及应用
  • win7怎么查看电脑主板型号
  • linux中rename命令详解
  • win7怎么取消开机选择系统
  • quick3.3 UIListview扩展应用
  • unity性能优化工具
  • windows 2002关机
  • 用JObj实现的渐变效果
  • 亲测源码论坛
  • 青岛网上办税服务厅登录
  • 申请小规模纳税人公司需要多久
  • 美国各州房产税税率
  • 个人养老金没有开立资金账户
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设