位置: IT常识 - 正文

5.OpenCV图像拼接(opencv拼接图片)

编辑:rootadmin
5.OpenCV图像拼接 一、前言

推荐整理分享5.OpenCV图像拼接(opencv拼接图片),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:opencv图片叠加显示,opencv 拼图,opencv图片叠加显示,opencv图片合成,opencv两张图片融合,opencvsharp 图像拼接,opencv图片合成,opencv 拼图,内容如对您有帮助,希望把文章链接给更多的朋友!

   图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360°全景图,可视作场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图像稳定等机器视觉领域有很大的应用。   图像拼接的输出是两个输入图像的并集。

输入图像特征点提取特征点匹配图像配准投影变换拼缝计算图像融合生成全景图

1、特征点提取(Feature Extraction):检测输入图像中的特征点。 2、图像配准(Image Registration):建立了图像之间的集合对应关系,使它们可在一个共同的参照系中进行变换、比较和分析。 3、投影变换(Warping):将其中一幅图像的图像重投影,并将图像放置在更大的画布上。 4、图像融合(Blending):通过改变边界附近的图像灰度级,去除这些缝隙,创建混合图像,从而在图像之间实现平滑过渡。混合模式(Blending Modes)用于将两层融合到一起。

二、实现方法基于SURF的图像拼接5.OpenCV图像拼接(opencv拼接图片)

  用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。

1.特征点提取和匹配 //创建SURF对象 //create 参数 海森矩阵阈值 Ptr<SURF> surf; surf = SURF::create(800); //暴力匹配器 BFMatcher matcher; vector<KeyPoint> key1, key2; Mat c, d; //寻找特征点 surf->detectAndCompute(left, Mat(), key2, d); surf->detectAndCompute(right, Mat(), key1, c); //特征点对比 保存 vector<DMatch>matches; //使用暴力匹配器匹配特征点 保存 matcher.match(d, c, matches); //排序 从小到大 sort(matches.begin(), matches.end()); //保留最优的特征点收集 vector<DMatch>good_matches; int ptrPoint = std::min(50, (int)(matches.size()*0.15)); for(int i=0; i<ptrPoint; i++) good_matches.push_back(matches[i]); //最佳匹配的特征点连成一线 Mat outimg; drawMatches(left, key2, right, key1, good_matches, outimg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("outimg", outimg);

2.图像配准

  这样子就得到了两幅待拼接图的匹配点集,接下来进行图像的配准,即将两张图像转换为同一坐标下,这里需要使用findHomography函数来求得变换矩阵。   但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所以需要对刚得到的点集good_matches再做一次处理,使其转换为Point2f类型的点集。

//特征点配准 vector<Point2f>imagepoint1, imagepoint2; for(int i=0; i<good_matches.size(); i++) { imagepoint1.push_back(key1[good_matches[i].trainIdx].pt); imagepoint2.push_back(key2[good_matches[i].queryIdx].pt); }

  上述操作后,用imagepoint1, imagepoint2去求变换矩阵,并且实现图像配准。   值得注意的是findHomography函数的参数中选择CV_RANSAC。使用RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。

//透视转换 Mat homo = findHomography(imagepoint1, imagepoint2, CV_RANSAC); imshow("homo", homo); //右图四个顶点坐标转换计算 CalcCorners(homo, right); Mat imageTransform; warpPerspective(right, imageTransform, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), left.rows)); imshow("imageTransform", imageTransform);

3.图像拷贝

拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。

int dst_width = imageTransform.cols; int dst_height = imageTransform.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform.copyTo(dst(Rect(0, 0, imageTransform.cols, imageTransform.rows))); left.copyTo(dst(Rect(0, 0, left.cols, left.rows)));

4.图像融合(去裂缝处理) OptimizeSeam(left, imageTransform, dst); imshow("dst", dst); waitKey(0);//优化两图的连接处,使得拼接自然void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst){ int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } }}

三、完整代码#include <iostream>#include <opencv2/opencv.hpp>#include <opencv2/highgui.hpp>#include <opencv2/xfeatures2d.hpp>#include <opencv2/calib3d.hpp>#include <opencv2/imgproc.hpp>using namespace std;using namespace cv;using namespace cv::xfeatures2d;typedef struct{ Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom;}four_corners_t;four_corners_t corners;void CalcCorners(const Mat& H, const Mat& src){ double v2[] = { 0, 0, 1 };//左上角 double v1[3];//变换后的坐标值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2];}//优化两图的连接处,使得拼接自然void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst){ int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } }}//计算配准图的四个顶点坐标int main(){ Mat left = imread("A.jpg"); Mat right =imread("B.jpg"); imshow("left", left); imshow("right", right); //1.特征点提取和匹配 //创建SURF对象 //create 参数 海森矩阵阈值 Ptr<SURF> surf; surf = SURF::create(800); //暴力匹配器 BFMatcher matcher; vector<KeyPoint> key1, key2; Mat c, d; //寻找特征点 surf->detectAndCompute(left, Mat(), key2, d); surf->detectAndCompute(right, Mat(), key1, c); //特征点对比 保存 vector<DMatch>matches; //使用暴力匹配器匹配特征点 保存 matcher.match(d, c, matches); //排序 从小到大 sort(matches.begin(), matches.end()); //保留最优的特征点收集 vector<DMatch>good_matches; int ptrPoint = std::min(50, (int)(matches.size()*0.15)); for(int i=0; i<ptrPoint; i++) good_matches.push_back(matches[i]); //最佳匹配的特征点连成一线 Mat outimg; drawMatches(left, key2, right, key1, good_matches, outimg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("outimg", outimg); //2.图像配准 //特征点配准 vector<Point2f>imagepoint1, imagepoint2; for(int i=0; i<good_matches.size(); i++) { imagepoint1.push_back(key1[good_matches[i].trainIdx].pt); imagepoint2.push_back(key2[good_matches[i].queryIdx].pt); } //透视转换 Mat homo = findHomography(imagepoint1, imagepoint2, CV_RANSAC); imshow("homo", homo); //右图四个顶点坐标转换计算 CalcCorners(homo, right); Mat imageTransform; warpPerspective(right, imageTransform, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), left.rows)); imshow("imageTransform", imageTransform); //3.图像拷贝 int dst_width = imageTransform.cols; int dst_height = imageTransform.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform.copyTo(dst(Rect(0, 0, imageTransform.cols, imageTransform.rows))); left.copyTo(dst(Rect(0, 0, left.cols, left.rows))); //4.优化拼接最终结果图,去除黑边 OptimizeSeam(left, imageTransform, dst); imshow("dst", dst); waitKey(0); return 0;}
本文链接地址:https://www.jiuchutong.com/zhishi/298845.html 转载请保留说明!

上一篇:浅识WebGL和Three.js(webgl1.0)

下一篇:Vue父子组件生命周期执行顺序是什么?(vue父子组件生命周期钩子执行顺序)

  • 出售股东
  • 税务师考试的报名费怎么还没有退成功
  • 事务所纳税
  • 付国外专利费用需办什么手续
  • 怎样根据税负率调账
  • 附加税减免如何申报
  • 没有工会的企业怎么发福利
  • 建筑行业增值税税负率一般控制在多少合适
  • 公司自用车辆出售如何交税
  • 核定征收可以无发票做账吗
  • 自行建造固定资产中的自营工程,在领用工程物资
  • 资产负债表要素包括几项
  • 增值税普通发票需要交税吗
  • 事业单位为职工代扣代缴个人所得税
  • 出口退税备案完后怎么办
  • 企业事故赔偿支出可以抵税吗
  • 假的手撕票已经入账了怎么办?
  • 软件维护费入什么科目
  • 房地产企业所得税清算条件
  • 所得税会计核算要点及程序
  • 人工费用占销售收入比重
  • 电子发票收款人和复核人可以是一个人吗
  • 代扣大额医保进哪个账户
  • 企业担保形成损失的原因
  • 亏损的递延所得税怎么理解
  • 工伤补偿是否缴纳医保
  • 房地产增值税结转收入的条件是什么
  • 公司车过户给个人流程
  • 水利基金减免怎么做账
  • 个税申报晚了会退税费吗
  • 关闭bios启动
  • win10双系统删除linux
  • 俄勒冈州地理之歌
  • 公司收到投资款怎么写收据?
  • 行政单位基建账如何并入大账
  • mkpart命令
  • 认缴制和实缴制的区别
  • 土地作为无形资产摊销年限
  • 融资租赁视同销售吗
  • 帝国cms视频教程
  • sql server go语句
  • 法人治理结构是指明确
  • 政府会计应付职工薪酬明细科目
  • sql中聚合函数的用法
  • 母公司与子公司内部合作协议
  • 一次性加速折旧考虑残值吗
  • 房产税征收对象和依据2021
  • 金税四期对企业的影响与应对
  • 个税里的年金是指
  • 对非本单位的营销方案
  • 处置存货损失应该放哪个科目
  • 劳务外包存在的法律风险
  • 资产处置损失抵税
  • 建筑业负数发票不填工程名称和地址可以吗
  • 旅行社开的发票如何记账?
  • 工资可以当月发放当月计提吗
  • 商贸公司库存表怎么做
  • 电梯在固定资产里属于什么设备类别
  • 在windows操作中
  • win10共享提示
  • windows8使用教程
  • msswchx.exe - msswchx进程是什么文件 有何作用
  • win8如何安装
  • cocos2dx schedule
  • 使用jquery操作dom
  • replace函数怎么替换
  • linux系统怎么搭建服务器
  • unity learn
  • WWW封装共享 [复制链接]
  • javaweb开发技术有哪些
  • node如何使用
  • unity提高渲染画质
  • node运行js文件
  • 批量ssh登录
  • python批量执行命令
  • 专项调查法
  • 内蒙古城镇土地使用税税率表
  • 营业税发票现在可以冲红么
  • 食堂增值服务有哪些
  • 湖北低保查询网站官网
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设