位置: IT常识 - 正文

基于Vision Transformer的图像去雾算法研究与实现(附源码)(基于专业性的家校双向互动,需要家长的学校教育参与)

编辑:rootadmin
基于Vision Transformer的图像去雾算法研究与实现(附源码) 基于Vision Transformer的图像去雾算法研究与实现0. 服务器性能简单监控

推荐整理分享基于Vision Transformer的图像去雾算法研究与实现(附源码)(基于专业性的家校双向互动,需要家长的学校教育参与),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:基于专业性的家校双向互动,需要家长的学校教育参与,基于网页的客服系统,基于网络创新形成的大数据的最突出特征是什么?( ),基于vision transformer的图像分类程序设计,基于是什么意思,基于核心素养下的大单元教学设计,基于vision transformer的图像分类程序设计,基于vision transformer的图像分类程序设计,内容如对您有帮助,希望把文章链接给更多的朋友!

\LOG_USE_CPU_MEMORY\文件夹下的use_memory.py文件可以实时输出CPU使用率以及内存使用率,配合nvidia-smi监控GPU使用率

可以了解服务器性能是否足够;运行时在哪一步使用率突然升高;是否需要释放内存等等

1. 数据集1.1 NH-HAZE

数据集下载: https://competitions.codalab.org/competitions/22236#participate-get_data

Train:1-40;Test:41-45

我们引入了NH-HAZE,一个非均匀的真实数据集,有成对真实的模糊和相应的无雾图像。因此,非均匀雾霾数据集的存在对于图像去雾场是非常重要的。

它代表第一个真实的图像去模糊数据集与非均匀的模糊和无模糊(地面真实)配对图像

为了补充之前的工作,在本文中,我们介绍了NH-HAZE,这是第一个具有非均匀模糊和无雾(地面真实)图像的真实图像去模糊数据集。

1.2 NTIRE 2019

DENSE-haze是一个真实的数据集,包含密集(均匀)模糊和无烟雾(地面真实)图像

官方地址:

https://data.vision.ee.ethz.ch/cvl/ntire19/#:~:text=Datasets%20and%20reports%20for%20NTIRE%202019%20challenges

https://data.vision.ee.ethz.ch/cvl/ntire19//dense-haze/

另一个下载地址:

https://www.kaggle.com/rajat95gupta/hazing-images-dataset-cvpr-2019?select=GT

Train:1-45;Test:51-55

1.3 I-HAZE

其中包含 35 对有雾的图像和相应的无雾(真实)室内图像

下载地址:https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/

Train:1-25;Test:31-35

1.4 O_HAZE

O-HAZE是第一个引入的包含模糊和无烟雾(地面真实)图像的真实数据集。它由45个不同的户外场景组成,使用一个专业的雾霾发生器在控制照明下拍摄。而O-HAZE和I-HAZE则由相对较轻、均匀的雾霾组成

下载地址:https://data.vision.ee.ethz.ch/cvl/ntire18//o-haze/

Train:1-35;Test:41-45

我们使用NH-HAZE数据集作为举例数据集,其他数据集除了数据集路径之外,大多数参数设置都一样。

该去雾项目源码下载:

https://download.csdn.net/download/DeepLearning_/87570157

2. 模型运行过程2.0 模型介绍

在文件夹/Uformer_ProbSparse/下存放模型代码

参考代码:https://github.com/ZhendongWang6/Uformer

2.1 预处理数据 — 把训练数据图像切分成大小为256*256的小图

下载数据集存放在:

/home/dell/桌面/TPAMI2022/Dehazing/#dataset/NH_haze/

内含两个文件夹:train test

对训练数据集处理:

python3 generate_patches_SIDD.py --src_dir /home/dell/桌面/TPAMI2022/Dehazing/#dataset/NH_haze/train --tar_dir /home/dell/桌面/2022毕业设计/Datasets/NH-HAZE/train_patches2.2 训练代码My_train.pypython3 ./My_train.py --arch Uformer --nepoch 270 --batch_size 32 --env My_Infor_CR --gpu '1' --train_ps 128 --train_dir /media/dell/fd6f6662-7e38-4427-80c6-0d4fb1f0e8b9/work_file/2022毕业设计/Datasets/NH-HAZE/train_patches --val_dir /media/dell/fd6f6662-7e38-4427-80c6-0d4fb1f0e8b9/work_file/2022毕业设计/Datasets/NH-HAZE/test_patches --embed_dim 32 --warmup基于Vision Transformer的图像去雾算法研究与实现(附源码)(基于专业性的家校双向互动,需要家长的学校教育参与)

如果要继续对模型进行训练:--pretrain_weights 设置预训练权重路径,我的模型预训练权重在My_best_model文件夹下,以数据集划分不同预训练权重

并添加参数 --resume

训练所有参数设置在option.py文件种,主要的参数含义:

--train_ps 训练样本的补丁大小,默认为128,指多大的patches输入到模型中--train_dir --val_dir 训练和测试文件夹,文件夹下包含两个文件夹gt和hzay,分别包含无雾图片集和带雾图片集--batch_size 设置Batch_size,默认为3--is_ab **是否使用n a对比损失,默认为False(使用)--w_loss_vgg7对比损失使用的权重,默认为1--w_loss_CharbonnierLoss CharbonnierLoss 所占权重,默认为1**2.3 测试代码test_long_GPU.py和预训练权重

预训练权重:

链接:https://pan.baidu.com/s/1a1YPTGSNa0R6I-qiTNir0A 提取码:y422

模型预训练权重:将百度网盘中的Uformer_ProbSparse/My_best_model文件夹放到Uformer_ProbSparse文件夹下,里面包含4大数据集下的权重

python3 ./test_long_GPU.py

测试流程:

在My_train.py文件中,为了训练速度考虑,我们是在每个patch上进行的测试,但patch上测试结果不等于在整图上测试的结果,因此该文件是对模型在整图上结果进行测试,论文中的结果与该测试结果一致

由于代码的特殊设置,需要让输入的图片的长和宽为 --train_ps 的整数倍,如果不够足,则要进行扩展

主要参数解释:

--input_dir 设置测试的文件夹,文件夹下包含两个文件夹gt和hzay,分别包含无雾图片集和带雾图片集

--train_ps训练样本的补丁大小,默认为128,指多大的patches输入到模型中

代码中的: L表示图像需要拓展长和宽为多大

例如:输入是1200 * 1600,patch size = 128时,L = 1664

L需要为128倍数,且要大于输入图像的长和宽,需要根据输入图像进行调整,例如:NH-HAZE数据集上的为L = 1664

3. NH-HAZE数据集上的Losslandscape

主要将最优权重的周围的loss可视化,以探索模型收敛的难易程度以及模型架构的性能

参考文献:Park N, Kim S. How Do Vision Transformers Work?[J]. arXiv preprint arXiv:2202.06709, 2022.

3.1 基于CNN模型(FFA-Net)的Loss landscape

预训练权重:

链接:https://pan.baidu.com/s/1a1YPTGSNa0R6I-qiTNir0A 提取码:y422

模型预训练权重:将百度网盘中的FFA_how-do-vits-work-transformer文件夹包含的内容放到FFA_how-do-vits-work-transformer文件夹下,里面包含FFA-Net在NH-HAZE数据集下的最优权重,以及该权重下运行的结果

在/FFA_how-do-vits-work-transformer/FFA_pretrain_weight/下存放FFA-Net模型在该数据集下的预训练权重,决定预训练权重的路径代码在/FFA_how-do-vits-work-transformer/FFA_model/option.py

主要代码FFA_losslandscape.py:在最优权重周围随机找121个权重,然后计算这些权重的loss值,得到的loss值保存在/FFA_how-do-vits-work-transformer/checkpoints/logs/FFA_NH/My_NH_ffa_3_19_best.pk/文件夹下用于绘图,得到的Loss landscape如下:

3.2 基于Vision Transformer架构改进后的Loss landscape

预训练权重:

链接:https://pan.baidu.com/s/1a1YPTGSNa0R6I-qiTNir0A 提取码:y422

模型预训练权重在2.3节有阐述

将百度网盘中的how-do-vits-work-transformer文件夹包含的内容放到how-do-vits-work-transformer文件夹下,下面有讲解文件夹内包含的内容

在/Uformer_ProbSparse/My_best_model/下存放改进后模型在各种数据集下的预训练权重,决定预训练权重的路径代码在/how-do-vits-work-transformer/Uformer_Info/option.py中的--pretrain_weights设置对应数据集上最优的参数权重路径

主要代码My_losslandscape.py:在最优权重周围随机找121个权重,然后计算这些权重的loss值,得到的loss值保存在/how-do-vits-work-transformer/checkpoints/logs/NH/Uformer_Informer/文件夹下用于绘图,得到的Loss landscape如下:

在实践过程中,通常运行My_losslandscape.py代码就可以直接得到下图

但在我运行过程中,因为服务器断电,只能继续训练,因此\how-do-vits-work-transformer\checkpoints\logs\NH\Uformer_Informer\下的middle_result.txt和NH_Uformer_Informer_x1_losslandscape.csv是两次运行文件中间结构,而losslandscape.ipynb中融合了两次运行结果得到该图

Park N, Kim S. How Do Vision Transformers Work?[J]. arXiv preprint arXiv:2202.06709, 2022.提到:损失景观越平坦,性能和泛化效果越好

可以发现:我们基于Vision Transformer架构改进后的模型和FFA-Net模型在最优参数时的Loss landscape,能够反应出我们的模型收敛效果比较好这与训练过程一致:我们的模型训练270个epoch就会收敛,而FFA-Net则需要40000个epoch

4. 实验结果

根据恢复图的结果,我们发现在部分图上的效果并不是特别优异

**可以很好的反应Vision Transformer的劣势:该架构虽然全局建模能力强,但局部建模能力没有CNN强,因此当输入某物体占大部分空间时,恢复结果容易受到其影响;因此可以在之后改进中使用CNN和Transformer组合模型,共同对全局和局部进行建模。

5. 消融实验6. 总结展望

本文链接地址:https://www.jiuchutong.com/zhishi/298665.html 转载请保留说明!

上一篇:CTF—web题库笔记(难度1)(ctf web2)

下一篇:十七届智能车智能视觉组(十四届智能车规则)

  • 工资中代扣款是什么
  • 为改良生产线发生的变化
  • 新政府会计制度衔接预算会计需做好的账目清理工作有
  • 简易计征开什么发票
  • 银行回单卡是什么卡
  • 分步法和分批法思维导图
  • 复合肥生产企业排名
  • 研发费用加计扣除新税收政策2023
  • 工程造价咨询服务流程
  • 上年减值准备收回如何做账务处理呢?
  • 投资子公司的现金流量
  • 拆迁补偿款上交财政
  • 年终奖社保怎么算
  • 缴纳土地出让金购买的土地是无形资产吗
  • 哪些税不可以扣除
  • 企业收到供货单位提供的材料,如其价款大于
  • 营改增对固定资产的影响
  • 企业房产使用税
  • 公司法人变更账务需要重新建立吗
  • 其他应付款在贷方,借方是什么科目
  • 金税盘开票信息修改
  • php数组函数面试题
  • php实现分页功能的方法
  • 电脑不能连接wifi只能连宽带
  • 什么样的企业是好企业,什么样的员工是好员工
  • 对视同销售行为应如何进行税务处理
  • wordpresswiki
  • 劳务派遣增值税差额征税
  • yolov5s和yolov5m
  • PHP:mcrypt_ofb()的用法_Mcrypt函数
  • iframe内嵌页面
  • 抵债资产怎么入账
  • 前端打印语句
  • 长期股权投资投资收益计算
  • php实现留言板功能怎么用
  • php冒泡法排序
  • 酒的增值税专票可抵扣不
  • 装订会计凭证步骤
  • 销售收入和销售收入净额的区别
  • 国外差旅费怎么入账
  • 工伤鉴定费计入什么科目
  • 企业缴纳个人所得税客户端
  • 审计助理是干啥的
  • 什么叫代销合同
  • 估价入账的账务处理
  • 逾期交房违约金 已支付金额
  • 委托代理进出口
  • 公司员工的电话费可以做费用吗
  • 工程招标费用由谁支付
  • 结算专用章是财务章吗
  • 银行承兑汇票怎么看
  • mysqld占用cpu高
  • WINDOWS操作系统内置的GUEST
  • win10苹果版
  • xp系统设置壁纸
  • windows8关机在哪里
  • mac怎么设置
  • 结构 类型
  • 使用jquery操作dom
  • 腙基是什么
  • Unity3D游戏开发引擎
  • 编写批处理
  • android开发技术介绍
  • python怎么多进程
  • Unity for Absolute Beginners(二)
  • Python实现HTTP协议下的文件下载方法总结
  • unity与android交互详细
  • 广东省地方税务局征收社会保险费欠费管理暂行办法
  • 重庆税务登记证在哪里办理
  • 税务文书保存期限分几类
  • 华为西安总代理
  • 如何发挥人才作为第一资源 护理
  • 苏州吴江区事业单位2023成绩公布
  • 江苏省常熟市归哪管
  • 车位交易费用
  • 财税方面的问题有什么
  • 航信报税
  • 浙江欧派和广东欧派哪个好
  • 上海买房退税政策2023最新
  • 调研报告与调研文章的区别
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设