位置: IT常识 - 正文

模型训练步骤(模型训练的过程是什么过程)

编辑:rootadmin
模型训练步骤

推荐整理分享模型训练步骤(模型训练的过程是什么过程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:模型训练步骤包括,模型训练的步骤,模型训练的步骤,模型训练的步骤,模型训练步骤包括,模型训练步骤有哪些,模型训练步骤包括,模型训练步骤包括验证,内容如对您有帮助,希望把文章链接给更多的朋友!

1.在model.py搭建神经网络。

# 搭建神经网络 10分类网络。import torchfrom torch import nnclass net(nn.Module): def __init__(self): super(net, self).__init__() self.model = nn.Sequential( # 卷积 nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2), # 最大池化 nn.MaxPool2d(kernel_size=2), # 卷积 nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2), # 最大池化 nn.MaxPool2d(kernel_size=2), # 卷积 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2), # 最大池化 nn.MaxPool2d(kernel_size=2), # 展平 nn.Flatten(), # 线性层 nn.Linear(in_features=64 * 4 * 4, out_features=64), nn.Linear(in_features=64, out_features=10) ) def forward(self, x): return self.model(x)

2.验证搭建网络的正确性

if __name__ == '__main__': # 测试网络的验证正确性 tudui = Tudui() input = torch.ones((64,3,32,32)) # batch_size=64(代表64张图片),3通道,32x32 output = tudui(input) print(output.shape)

结果是

torch.Size([64,10])

返回64行数据,每一行10个数据,代表每一张图片的概率。

3.在train.py下

①准备数据集,一个训练数据集,一个测试数据集。因为CIFAR10数据集是PIL,要转为tensor数据类型。

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

②加载数据集。利用DataLoader加载数据集。

train_dataloader = DataLoader(dataset=train_data, batch_size=64)test_dataloader = DataLoader(dataset=test_data, batch_size=64)

③创建网络模型

from model import * wang = net()

模型训练步骤(模型训练的过程是什么过程)

④创建损失函数

loss_fn = nn.CrossEntropyLoss()

⑤创建优化器

learning_rate = 0.01optimizer = torch.optim.SGD(params=wang.parameters(), lr=learning_rate)

⑥设置网络训练参数

# 设置训练网络的一些参数# 记录训练次数total_train_step = 0# 记录测试的次数total_test_step = 0# 训练的轮数epoch = 10

⑦开始训练

for i in range(epoch): print("----------第{}轮训练开始-----------".format(i+1)) # i从0-9 # 训练步骤开始 for data in train_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 优化器优化模型 optimizer.zero_grad() # 首先要梯度清零 loss.backward() # 反向传播得到每一个参数节点的梯度 optimizer.step() # 对参数进行优化 total_train_step += 1 print("训练次数:{},loss:{}".format(total_train_step,loss.item()))

【补充:】

import torcha = torch.tensor(5)print(a)print(a.item())

输出:

tensor(5)

5.【测试】:看模型是否训练好。

每次训练完进行一轮测试,看测试集的损失或者正确率评估模型是否训练好。

测试过程模型不需要调优,利用现有的模型测试。

with torch.no_grad():

6.在上述代码继续编写

# 测试步骤开始 total_test_loss = 0 with torch.no_grad(): # 无梯度,不进行调优 for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 该loss为部分数据在网络模型上的损失,为tensor数据类型 # 求整体测试数据集上的误差或正确率 total_test_loss = total_test_loss + loss.item() # loss为tensor数据类型,而total_test_loss为普通数字 print("整体测试集上的Loss:{}".format(total_test_loss))

7.跟TensorbBoard相结合

import torchvision.datasetsfrom torch.utils.tensorboard import SummaryWriterfrom model import *from torch import nnfrom torch.utils.data import DataLoader# 准备数据集,CIFAR10 数据集是PIL Image,要转换为tensor数据类型train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),download=True)test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)# 看一下训练数据集和测试数据集都有多少张(如何获得数据集的长度)train_data_size = len(train_data) # length 长度test_data_size = len(test_data)# 如果train_data_size=10,那么打印出的字符串为:训练数据集的长度为:10print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化,把format中的变量替换{}print("测试数据集的长度为:{}".format(test_data_size))# 利用 DataLoader 来加载数据集train_dataloader = DataLoader(train_data,batch_size=64)test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型tudui = Tudui()# 创建损失函数loss_fn = nn.CrossEntropyLoss() # 分类问题可以用交叉熵# 定义优化器learning_rate = 0.01 # 另一写法:1e-2,即1x 10^(-2)=0.01optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate) # SGD 随机梯度下降# 设置训练网络的一些参数total_train_step = 0 # 记录训练次数total_test_step = 0 # 记录测试次数epoch = 10 # 训练轮数# 添加tensorboardwriter = SummaryWriter("../logs_train")for i in range(epoch): print("----------第{}轮训练开始-----------".format(i+1)) # i从0-9 # 训练步骤开始 for data in train_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 优化器优化模型 optimizer.zero_grad() # 首先要梯度清零 loss.backward() # 反向传播得到每一个参数节点的梯度 optimizer.step() # 对参数进行优化 total_train_step += 1 if total_train_step % 100 ==0: # 逢百才打印记录 print("训练次数:{},loss:{}".format(total_train_step,loss.item())) writer.add_scalar("train_loss",loss.item(),total_train_step) # 测试步骤开始 total_test_loss = 0 with torch.no_grad(): # 无梯度,不进行调优 for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 该loss为部分数据在网络模型上的损失,为tensor数据类型 # 求整体测试数据集上的误差或正确率 total_test_loss = total_test_loss + loss.item() # loss为tensor数据类型,而total_test_loss为普通数字 print("整体测试集上的Loss:{}".format(total_test_loss)) writer.add_scalar("test_loss",total_test_loss,total_test_step) total_test_step += 1writer.close()

保存模型:

torch.save(tudui,"tudui_{}.pth".format(i)) # 每一轮保存一个结果 print("模型已保存")writer.close()

【代码优化,提升正确率】

# 求整体测试数据集上的误差或正确率 accuracy = (outputs.argmax(1) == targets).sum() # 1:横向比较,==:True或False,sum:计算True或False个数 total_accuracy = total_accuracy + accuracy print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)) # 正确率为预测对的个数除以测试集长度 writer.add_scalar("test_accuracy",total_test_loss,total_test_step,total_test_step)

【完整代码】

import torchimport torchvision.datasetsfrom torch.utils.tensorboard import SummaryWriterfrom model import *from torch import nnfrom torch.utils.data import DataLoader# 准备数据集,CIFAR10 数据集是PIL Image,要转换为tensor数据类型train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),download=True)test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)# 看一下训练数据集和测试数据集都有多少张(如何获得数据集的长度)train_data_size = len(train_data) # length 长度test_data_size = len(test_data)# 如果train_data_size=10,那么打印出的字符串为:训练数据集的长度为:10print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化,把format中的变量替换{}print("测试数据集的长度为:{}".format(test_data_size))# 利用 DataLoader 来加载数据集train_dataloader = DataLoader(train_data,batch_size=64)test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型tudui = Tudui()# 创建损失函数loss_fn = nn.CrossEntropyLoss() # 分类问题可以用交叉熵# 定义优化器learning_rate = 0.01 # 另一写法:1e-2,即1x 10^(-2)=0.01optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate) # SGD 随机梯度下降# 设置训练网络的一些参数total_train_step = 0 # 记录训练次数total_test_step = 0 # 记录测试次数epoch = 10 # 训练轮数# 添加tensorboardwriter = SummaryWriter("../logs_train")for i in range(epoch): print("----------第{}轮训练开始-----------".format(i+1)) # i从0-9 # 训练步骤开始 for data in train_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 优化器优化模型 optimizer.zero_grad() # 首先要梯度清零 loss.backward() # 反向传播得到每一个参数节点的梯度 optimizer.step() # 对参数进行优化 total_train_step += 1 if total_train_step % 100 ==0: # 逢百才打印记录 print("训练次数:{},loss:{}".format(total_train_step,loss.item())) writer.add_scalar("train_loss",loss.item(),total_train_step) # 测试步骤开始 total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): # 无梯度,不进行调优 for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 该loss为部分数据在网络模型上的损失,为tensor数据类型 # 求整体测试数据集上的误差或正确率 total_test_loss = total_test_loss + loss.item() # loss为tensor数据类型,而total_test_loss为普通数字 accuracy = (outputs.argmax(1) == targets).sum() # 1:横向比较,==:True或False,sum:计算True或False个数 total_accuracy = total_accuracy + accuracy print("整体测试集上的Loss:{}".format(total_test_loss)) print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)) # 正确率为预测对的个数除以测试集长度 writer.add_scalar("test_loss",total_test_loss,total_test_step) writer.add_scalar("test_accuracy",total_test_loss,total_test_step,total_test_step) total_test_step += 1 torch.save(tudui,"tudui_{}.pth".format(i)) # 每一轮保存一个结果 print("模型已保存")writer.close()
本文链接地址:https://www.jiuchutong.com/zhishi/298395.html 转载请保留说明!

上一篇:8种css居中实现的详细实现方式了(css各种居中)

下一篇:JavaWeb 项目 --- 表白墙 和 在线相册(javaweb项目开发流程)

  • 税收收入包括哪些形式
  • 进口设备退税如何账务处理?
  • 什么是资本利得?
  • 资产损失税前扣除管理办法
  • 待处理财产损益年底怎么处理
  • 以件数为印花税计税依据的有哪些
  • 什么是进口增值税率
  • 一次性年金怎么计算
  • 初始余额录入时需要录入什么
  • 水泥沙子开票属于什么类别
  • 管道运输是什么和什么合二为一
  • 会计发票怎么样粘贴,记账凭证也要粘上吗
  • 货运代理公司会计涉及的科目
  • 彩票扣税比例
  • 劳保费用可以开专票吗
  • 会计上的未达账项是什么
  • 收购不良资产收益怎么算
  • 民办幼儿园所得税优惠政策
  • 出售固定资产要交哪些税
  • 民办幼儿园怎么给老师交五险一金
  • 分支机构享受了税收优惠,是由总机构备案还是分支机构备案?
  • 利息发票能开专票吗
  • 财务中不能冲销的凭证
  • 变动成本主要包括
  • 钢材增值税发票
  • 增值税小规模纳税人优惠政策
  • 拆迁安置房如何写两人名字
  • 公司产品因质量问题买家追究
  • 超出经营范围开发票
  • 合伙企业财产的管理和使用规定
  • 电子商务公司的简介
  • win10电脑如何设置锁屏时间
  • 鸿蒙怎么添加
  • 支付航天的代理公司
  • 小规模纳税人销售货物税率是多少
  • 企业分红的会计科目
  • vue打包注意事项
  • 医院个人缴费什么意思
  • 企业采购过程中发生的材料短缺
  • 企业职工福利费包括哪些内容
  • 境外支付佣金代扣代缴增值税
  • 小微企业所得税税收优惠政策2023年
  • 分配股利账务处理
  • 【GoF 23】23种设计模式与OOP七大原则概述
  • 前端页面设计
  • 财务报表季报应付职工薪酬是指三个月工资累计还是
  • 织梦图片要放哪里
  • 织梦使用手册
  • 个体工商户转企业政策
  • 会计学中管理费用是什么
  • 材料盘盈如何入账
  • 编制现金流量表应以什么为基础
  • 门面转让费做账怎么做
  • 收到垫付款计入什么科目
  • 国家法定滞纳金规定
  • 弃置费用摊销为什么在贷方增加
  • 开红字发票必须要收回原发票并作废吗?
  • 以现金支付现金股票增值权属于经营活动吗
  • 电子钥匙在线服务
  • 无形资产摊销如何记账
  • 收款凭证和付款凭证是出纳人员收款、付款的依据
  • 个体户建账吗
  • mysql必知必会 pdf完整版
  • win10的时间设置
  • centos基本操作
  • Centos Nginx + Svbversion配置安装方法分享
  • win7中文显示问号
  • centos7更改默认内核
  • win10系统用正版有什么好处
  • [置顶]电影名字《收件人不详》
  • qt渲染机制
  • js单线程多线程
  • 关于javascript函数
  • js过滤filter
  • nodejs基础教程
  • 安卓手机管家
  • bootstrap入门
  • 自然人扣缴端初始密码
  • 进出口贸易产品种类
  • 现在哪个保险公司车险好
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设