位置: IT常识 - 正文

手把手教你训练一个VAE生成模型一生成手写数字(你知道怎么训练)

编辑:rootadmin
手把手教你训练一个VAE生成模型一生成手写数字 手把手教你设计并训练一个VAE生成模型1 VAE简介2 生成手写数字实践3 调用生成模型生成指定数字1 VAE简介

推荐整理分享手把手教你训练一个VAE生成模型一生成手写数字(你知道怎么训练),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:训练方法视频,手把手教你训练自己,训练小技巧,训练怎么训,手把手教你训练身体,手把手教你训练视频,手把手教你训练自己,手把手教你训练身体,内容如对您有帮助,希望把文章链接给更多的朋友!

VAE(Variational Autoencoder)变分自编码器是一种使用变分推理的自编码器,其主要用于生成模型。 VAE 的编码器是模型的一部分,用于将输入数据压缩成潜在表示,即编码。

VAE 编码器包括两个子网络:一个是推断网络,另一个是生成网络。推断网络输入原始输入数据,并输出两个参数:均值和方差。这些参数用于描述编码的潜在分布。生成网络输入潜在编码并输出重构的输入数据。

为了从输入数据中学习潜在表示,VAE 采用变分推理的方法。变分推理是一种通过最大化对数似然来学习潜在分布的方法。首先,我们假设潜在分布为高斯分布,然后通过最大化对数似然估计参数。这些参数(均值和方差)由推断网络学习。

对于给定的输入数据,推断网络学习参数,然后使用这些参数计算潜在分布。我们从潜在分布中采样一个编码,然后将它输入生成网络。生成网络使用这个编码重构原始输入数据。最后,我们使用重构数据和原始数据之间的差异来计算损失。这个损失用来衡量 VAE 对原始输入数据的重构精度。

最后,VAE 编码器的目的是学习一种潜在表示,使得重构输入数据的损失最小。这个潜在表示可以用于生成新的数据,或者用于其他目的,如数据压缩或降维。 总的来说,VAE 编码器是一种使用变分推理的自编码器,用于学习潜在表示,并使用这个表示重构输入数据。

2 生成手写数字实践

VAE 生成模型的最简单例子可能是用于生成手写数字的模型。手写数字数据集通常被编码为 28x28 像素的灰度图像。我们可以使用 VAE 来学习生成新的手写数字图像。

# 加载 MNIST 数据集transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])mnist = datasets.MNIST(root='.', download=True, transform=transform)

首先,我们需要定义 VAE 的网络结构。这个 VAE 的编码器可能包括一个卷积层,用于提取图像特征,以及一个全连接层,用于将卷积层的输出压缩成潜在表示。编码器的输出是两个参数:均值和方差。

# 定义 VAE 编码器class VAEEncoder(nn.Module): def __init__(self, input_size, hidden_size, latent_size): super().__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, latent_size * 2) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) mu, log_var = x.split(latent_size, dim=1) return mu, log_var

然后,我们可以使用这些参数计算潜在分布,并从中采样潜在编码。潜在编码是我们用于生成新图像的输入。我们的 VAE 还包括一个解码器,用于将潜在编码解码为图像。解码器可能包括一个全连接层和一个卷积层,用于将潜在编码转换为图像。

# 定义 VAE 解码器class VAEDecoder(nn.Module): def __init__(self, latent_size, hidden_size, output_size): super().__init__() self.fc1 = nn.Linear(latent_size, hidden_size) self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) return x手把手教你训练一个VAE生成模型一生成手写数字(你知道怎么训练)

最后,我们使用重构图像和原始图像之间的差异来计算 VAE 的损失。我们可以使用这个损失来训练 VAE,以使得重构图像尽可能接近原始图像。当我们的 VAE 训练完成后,我们就可以使用它来生成新的手写数字图像。

# 定义 VAE 损失函数def vae_loss(recon, x, mu, log_var): recon_loss = nn.BCELoss(reduction='sum')(recon, x) kl_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) return recon_loss + kl_loss

为了生成新的图像,我们可以从 VAE 的潜在分布中采样一个潜在编码,然后将它输入 VAE 的解码器。解码器会使用这个编码生成一个新的图像。我们可以使用不同的潜在编码生成不同的图像,从而生成一系列新的手写数字图像。

# 使用 VAE 生成图像 with torch.no_grad(): z = torch.randn(1, latent_size) image = model.decoder(z).view(28, 28) image = image.detach().numpy() plt.imshow(image, cmap='gray') plt.show()

这是一个 VAE 生成模型的最简单例子。 VAE 可以用于生成各种各样的数据,包括图像、文本、音频和视频。 VAE 的更复杂的例子可能包括更复杂的网络结构、更多的层和更多的参数。

下面是使用 PyTorch 实现 VAE 生成手写数字的完整代码:

# VAE.pyimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import DataLoaderfrom torchvision import datasets, transformsimport matplotlib.pyplot as plt# 定义 VAE 编码器class VAEEncoder(nn.Module): def __init__(self, input_size, hidden_size, latent_size): super().__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, latent_size * 2) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) mu, log_var = x.split(latent_size, dim=1) return mu, log_var# 定义 VAE 解码器class VAEDecoder(nn.Module): def __init__(self, latent_size, hidden_size, output_size): super().__init__() self.fc1 = nn.Linear(latent_size, hidden_size) self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) return x# 定义 VAE 模型class VAE(nn.Module): def __init__(self, input_size, hidden_size, latent_size): super().__init__() self.encoder = VAEEncoder(input_size, hidden_size, latent_size) self.decoder = VAEDecoder(latent_size, hidden_size, input_size) def forward(self, x): mu, log_var = self.encoder(x) std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) z = mu + std * eps recon = self.decoder(z) return recon, mu, log_var# 定义 VAE 损失函数def vae_loss(recon, x, mu, log_var): recon_loss = nn.BCELoss(reduction='sum')(recon, x) kl_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) return recon_loss + kl_loss# 加载 MNIST 数据集transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])mnist = datasets.MNIST(root='.', download=True, transform=transform)# 定义训练参数batch_size = 64lr = 1e-3num_epochs = 20# 定义数据加载器data_loader = DataLoader(mnist, batch_size=batch_size, shuffle=True) # shuffle=True 打乱数据# 定义模型、优化器和损失函数# 定义 VAE 模型input_size = 28 * 28hidden_size = 256latent_size = 64model = VAE(input_size, hidden_size, latent_size)# 定义优化器optimizer = optim.Adam(model.parameters(), lr=lr)if __name__ == '__main__': # 仅在当前文件中运行时才执行以下代码 # 训练 VAE 模型 for epoch in range(num_epochs): epoch_loss = 0.0 for x, _ in data_loader: x = x.view(-1, input_size) recon, mu, log_var = model(x) loss = vae_loss(recon, x, mu, log_var) optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.item() print(f'Epoch {epoch+1} loss: {epoch_loss / len(mnist):.4f}') # 使用 VAE 生成图像 with torch.no_grad(): z = torch.randn(1, latent_size) image = model.decoder(z).view(28, 28) image = image.detach().numpy() plt.imshow(image, cmap='gray') plt.show() # 保存模型 torch.save(model.state_dict(), 'vae.pth')3 调用生成模型生成指定数字

上面我们已经训练好了 VAE 模型,如果想使用该模型生成指定的数字,则不需要再次训练模型。我们可以直接使用训练好的模型,通过指定的 latent variables 生成想要的数字。

要做到这一点,需要按照以下步骤操作:

选择一个你想要生成的数字的图像作为样本,如:mnist [9][0]=4, [7][0]=3, [0][0]=5使用 VAE 的编码器将该图像编码为 latent variables将生成的 latent variables 作为输入传递给 VAE 的解码器,生成你想要的数字图像

下面是实现上述操作的示例代码:

在另一个文件 generate.py 中调用上面已经训练好的模型:

# generate.py import torchimport matplotlib.pyplot as pltfrom VAE import model, input_size, mnist # 从 VAE.py 中导入模型、输入大小和 MNIST 数据集# 加载已训练好的模型model.load_state_dict(torch.load('vae.pth'))# 选择mnist的样本图像 sample_image = mnist[0][0] # mnist[0][0]是数字5的数据集# 使用 VAE 的编码器将样本图像编码为 latent variablesmu, log_var = model.encoder(sample_image.view(-1, input_size))# 将生成的 latent variables 作为输入传递给 VAE 的解码器,生成数字图像generated_image = model.decoder(mu).view(28, 28)# 显示原始图像和生成的图像plt.subplot(1, 2, 1)plt.title('Original Image')plt.imshow(sample_image.view(28, 28), cmap='gray')plt.subplot(1, 2, 2)plt.title('Generated Image')plt.imshow(generated_image.detach().numpy(), cmap='gray')plt.show()

在上面的代码中,使用了 MNIST 数据集的第0个样本图像作为输入,所以模型生成的数字应该是数据集中第一个样本的数字,5。如果我们想生成不同的数字,可以使用不同的样本图像,例如 mnist[1][0],mnist[2][0] 等。

上面首先使用 VAE 的编码器将样本图像编码为 latent variables,然后使用 VAE 的解码器生成数字图像,再使用model.load_state_dict() 加载已保存的模型。最后,使用已加载的模型生成数字图像并显示。效果如下图: 上面模型的生成性能可能不是最好的,如果我们想改变 VAE 模型的表现,例如生成更加细腻、清晰的图像,则可能需要再次训练模型。我们可以通过调整训练参数,例如批次大小、学习率等来实现。

此外,我们还可以尝试改变 VAE 模型的结构,例如增加或减少网络层的数量,或者改变每一层的单元数量来提高模型的表现。这需要对深度学习和神经网络有较深的理解,并且可能需要多次尝试和调整才能找到最优的网络结构。

为了提升生成模型的性能,我们可以尝试以下操作:

增加编码器和解码器的层数,以增加模型的复杂度。使用更复杂的激活函数,例如 LeakyReLU 或 ELU。使用更多的训练数据,例如从其他数据集中收集更多的数据。尝试使用不同的优化器,例如 RMSProp 或 Adamax。调整学习率,例如适当降低学习率以避免过拟合。使用数据增强,例如随机旋转、翻转或缩放图像来增加训练数据的多样性。

欢迎关注,感谢支持!

本文链接地址:https://www.jiuchutong.com/zhishi/297570.html 转载请保留说明!

上一篇:Vue首屏加载过慢出现白屏的六种优化方案(vue加载速度慢)

下一篇:Delete `␍` 最简单最有效的解决方法和解释(VScode)

  • 增值税加计抵减是什么意思
  • 发行股票手续费佣金计入什么科目
  • 合作社开具的免税农产品发票
  • 金税盘清卡怎么统计税额
  • 公司买车能一次性抵扣所得税吗
  • 代扣个人社保的账务处理
  • 有限合伙企业利润先税后分
  • 在建工程转固定资产账务处理
  • 应收账款计提坏账比例
  • 分配的股息 要交所得税吗
  • 原材料的运输
  • 劳务公司购买材料怎么做账
  • 工资3500该不该辞职
  • 一般纳税人转出进项税额
  • 一般纳税人注销库存需要补交税吗
  • 红利抵免的用法是什么
  • 会计审核票据如何签字
  • 上月留抵的增值税在哪查询
  • 未完工产品成本计算公式
  • 如何让自己的网站被百度收录
  • win10无法设置pin码怎么办
  • windows 临时文件夹
  • 可转债溢价率多高为好
  • 如何看懂财务报表的书
  • 取得成本tc
  • win10蓝屏错误怎么办
  • php嵌入js
  • PHP:xml_parser_free()的用法_XML解析器函数
  • 高新企业研发支出转产成品
  • PHP:oci_bind_by_name()的用法_Oracle函数
  • rk3328 sdk
  • php抽奖程序源码
  • 委托加工物资实际成本构成一般包括
  • 固定资产的使用寿命超过一个会计年度
  • vue运行报错
  • php读取word内容
  • vuexy
  • 前端常见面试
  • chkconfig命令参数
  • php fopen()
  • php教程 ftp 函数
  • vue加载时如何避免出现代码
  • 电子发票是正规发票吗能报销吗
  • 兼职费用怎么入账报销
  • 资产负债表中的货币资金怎么算
  • 中药资源与开发跨专业考研
  • 13%和17%税率
  • 一般纳税人税率2023
  • 公司个人所得税申报操作流程
  • 解决烧心最快方法
  • 企业所得税税前扣除管理办法2018
  • 小规模纳税人分红要交税吗
  • 为什么要进行结账和对账
  • 结转损益利息收入贷方红字什么意思
  • 递延所得税资产账务处理
  • 预收账款和应收账款可以放在一个账户
  • 短期薪酬主要包括
  • 创建小企业
  • vb.net with
  • 官方发布预防新冠戴口罩指引
  • vmware虚拟机安装Linux教程
  • 我用u盘装系统
  • win10系统预览版
  • windows10下软件的app
  • 微软的定时炸弹就是Windows XP
  • centos下安装gcc
  • 64位win10预览版10565更新补丁KB3105208后蓝屏怎么办?
  • 如何设置win10自动登录
  • ctl.start
  • Retina MacBook和10.10.3支持更快的NVMe SSD接口
  • init systemd
  • window10稳定版
  • js动态表格可修改表格数据
  • 使用jquery操作dom
  • python scrapy爬虫
  • android 属性动画原理
  • 安卓判断横竖屏
  • Android 使用nodejs
  • 登录""增值税发票选择确认平台""时提示""打开设备
  • 15号扣税
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设