位置: IT常识 - 正文

利用Python实现酒店评论的中文情感分析,含数据集(用python编写)

编辑:rootadmin
利用Python实现酒店评论的中文情感分析,含数据集 利用Python实现酒店评论的情感分析

推荐整理分享利用Python实现酒店评论的中文情感分析,含数据集(用python编写),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:用python编写,利用python进行,python运用,用python编写,python怎样用,利用python进行,利用python进行,怎么用python做,内容如对您有帮助,希望把文章链接给更多的朋友!

完整代码下载地址:利用Python实现酒店评论的中文情感分析

情感极性分析,即情感分类,对带有主观情感色彩的文本进行分析、归纳。情感极性分析主要有两种分类方法:基于情感知识的方法和基于机器学习的方法。基于情感知识的方法通过一些已有的情感词典计算文本的情感极性(正向或负向),其方法是统计文本中出现的正、负向情感词数目或情感词的情感值来判断文本情感类别;基于机器学习的方法利用机器学习算法训练已标注情感类别的训练数据集训练分类模型,再通过分类模型预测文本所属情感分类。本文采用机器学习方法实现对酒店评论数据的情感分类,利用Python语言实现情感分类模型的构建和预测,不包含理论部分,旨在通过实践一步步了解、实现中文情感极性分析。

1 开发环境准备1.1 Python环境

在python官网https://www.python.org/downloads/ 下载计算机对应的python版本,本人使用的是Python2.7.13的版本。

1.2 第三方模块

本实例代码的实现使用到了多个著名的第三方模块,主要模块如下所示:

1)Jieba 目前使用最为广泛的中文分词组件。下载地址:https://pypi.python.org/pypi/jieba/2)Gensim 用于主题模型、文档索引和大型语料相似度索引的python库,主要用于自然语言处理(NLP)和信息检索(IR)。下载地址:https://pypi.python.org/pypi/gensim 本实例中的维基中文语料处理和中文词向量模型构建需要用到该模块。3)Pandas 用于高效处理大型数据集、执行数据分析任务的python库,是基于Numpy的工具包。下载地址:https://pypi.python.org/pypi/pandas/0.20.14)Numpy 用于存储和处理大型矩阵的工具包。下载地址:https://pypi.python.org/pypi/numpy5)Scikit-learn 用于机器学习的python工具包,python模块引用名字为sklearn,安装前还需要Numpy和Scipy两个Python库。官网地址:http://scikit-learn.org/stable/6)Matplotlib Matplotlib是一个python的图形框架,用于绘制二维图形。下载地址:https://pypi.python.org/pypi/matplotlib7)Tensorflow Tensorflow是一个采用数据流图用于数值计算的开源软件库,用于人工智能领域。 官网地址:http://www.tensorfly.cn/ 下载地址:https://pypi.python.org/pypi/tensorflow/1.1.02 数据获取2.1 停用词词典

本文使用中科院计算所中文自然语言处理开放平台发布的中文停用词表,包含了1208个停用词。下载地址:http://www.hicode.cc/download/view-software-13784.html

2.2 正负向语料库

文本从http://www.datatang.com/data/11936 下载“有关中文情感挖掘的酒店评论语料”作为训练集与测试集,该语料包含了4种语料子集,本文选用正负各1000的平衡语料(ChnSentiCorp_htl_ba_2000)作为数据集进行分析。

3 数据预处理3.1 正负向语料预处理

下载并解压ChnSentiCorp_htl_ba_2000.rar文件,得到的文件夹中包含neg(负向语料)和pos(正向语料)两个文件夹,而文件夹中的每一篇评论为一个txt文档,为了方便之后的操作,需要把正向和负向评论分别规整到对应的一个txt文件中,即正向语料的集合文档(命名为2000_pos.txt)和负向语料的集合文档(命名为2000_neg.txt)。 具体Python实现代码如下所示:

运行完成后得到2000_pos.txt和2000_neg.txt两个文本文件,分别存放正向评论和负向评论,每篇评论为一行。文档部分截图如下所示:

3.2 中文文本分词

本文采用结巴分词分别对正向语料和负向语料进行分词处理。特别注意,在执行代码前需要把txt源文件手动转化成UTF-8格式,否则会报中文编码的错误。在进行分词前,需要对文本进行去除数字、字母和特殊符号的处理,使用python自带的string和re模块可以实现,其中string模块用于处理字符串操作,re模块用于正则表达式处理。 具体实现代码如下所示:

处理完成后,得到2000_pos_cut.txt和2000_neg_cut.txt两个txt文件,分别存放正负向语料分词后的结果。分词结果部分截图如下所示:

3.3 去停用词

分词完成后,即可读取停用词表中的停用词,对分词后的正负向语料进行匹配并去除停用词。去除停用词的步骤非常简单,主要有两个:

1)读取停用词表;2)遍历分词后的句子,将每个词丢到此表中进行匹配,若停用词表存在则替换为空。

具体实现代码如下所示:

利用Python实现酒店评论的中文情感分析,含数据集(用python编写)

根据代码所示,停用词表的获取使用到了python特有的广播形式,一句代码即可搞定:

stopkey = [w.strip() for w in codecs.open('data\stopWord.txt', 'r', encoding='utf-8').readlines()]

读取出的每一个停用词必须要经过去符号处理即w.strip(),因为读取出的停用词还包含有换行符和制表符,如果不处理则匹配不上。代码执行完成后,得到2000_neg_cut_stopword.txt和2000_pos_cut_stopword.txt两个txt文件。

由于去停用词的步骤是在句子分词后执行的,因此通常与分词操作在同一个代码段中进行,即在句子分词操作完成后直接调用去停用词的函数,并得到去停用词后的结果,再写入结果文件中。本文是为了便于步骤的理解将两者分开为两个代码文件执行,各位可根据自己的需求进行调整。

3.4 获取特征词向量

根据以上步骤得到了正负向语料的特征词文本,而模型的输入必须是数值型数据,因此需要将每条由词语组合而成的语句转化为一个数值型向量。常见的转化算法有Bag of Words(BOW)、TF-IDF、Word2Vec。本文采用Word2Vec词向量模型将语料转换为词向量。

由于特征词向量的抽取是基于已经训练好的词向量模型,而wiki中文语料是公认的大型中文语料,本文拟从wiki中文语料生成的词向量中抽取本文语料的特征词向量。Wiki中文语料的Word2vec模型训练在之前写过的一篇文章“利用Python实现wiki中文语料的word2vec模型构建” 中做了详尽的描述,在此不赘述。即本文从文章最后得到的wiki.zh.text.vector中抽取特征词向量作为模型的输入。

获取特征词向量的主要步骤如下:

1)读取模型词向量矩阵;2)遍历语句中的每个词,从模型词向量矩阵中抽取当前词的数值向量,一条语句即可得到一个二维矩阵,行数为词的个数,列数为模型设定的维度;3)根据得到的矩阵计算矩阵均值作为当前语句的特征词向量;4)全部语句计算完成后,拼接语句类别代表的值,写入csv文件中。

主要代码如下图所示:

代码执行完成后,得到一个名为2000_data.csv的文件,第一列为类别对应的数值(1-pos, 0-neg),第二列开始为数值向量,每一行代表一条评论。结果的部分截图如下所示:

3.5 降维

Word2vec模型设定了400的维度进行训练,得到的词向量为400维,本文采用PCA算法对结果进行降维。具体实现代码如下所示:

运行代码,根据结果图发现前100维就能够较好的包含原始数据的绝大部分内容,因此选定前100维作为模型的输入。

4 分类模型构建

本文采用支持向量机(SVM)作为本次实验的中文文本分类模型,其他分类模型采用相同的分析流程,在此不赘述。

支持向量机(SVM)是一种有监督的机器学习模型。本文首先采用经典的机器学习算法SVM作为分类器算法,通过计算测试集的预测精度和ROC曲线来验证分类器的有效性,一般来说ROC曲线的面积(AUC)越大模型的表现越好。

首先使用SVM作为分类器算法,随后利用matplotlib和metric库来构建ROC曲线。具体python代码如下所示:

运行代码,得到Test Accuracy: 0.88,即本次实验测试集的预测准确率为88%,ROC曲线如下图所示。

完整代码下载地址:利用Python实现酒店评论的中文情感分析

本文链接地址:https://www.jiuchutong.com/zhishi/295382.html 转载请保留说明!

上一篇:Segment Anything Model (SAM)——分割一切,具有预测提示输入的图像分割实践(segment anything model github)

下一篇:操作系统——死锁(操作系统())

  • 随机赠送礼品个人所得税
  • 应交税金怎么算出来的
  • 公司租房代房东缴纳租房税金
  • 可供出售金融资产新准则叫什么
  • 增值税少企业所得税多说明什么
  • 小微企业免税销售额填含税还是不含税
  • 经营性投资是什么
  • 一般纳税人劳务派遣
  • 环保税申报表怎么填制
  • 计提存货跌价准备怎么计算
  • 房地产企业汇缴清算条件
  • 报销增值税发票和普通发票
  • 火车票补票报销流程
  • 固定资产变动时应如何处理
  • 用党委经费买的固定资产如何计提?
  • 什么是增值税差额征税政策
  • 现金日记账的登记依据有
  • 异地作业人员的个税必须在收入地交吗?
  • 销售款的印花税是按含税还是不含税价款申报?
  • 预付账款怎么做账
  • 忘了结转成本怎么办
  • 企业销售使用过的汽车如何开票
  • 固定资产净值如何清零
  • 关税保险费计算方法
  • 小规模纳税人无票收入免税吗
  • 外包公司代缴的税怎么算
  • 个人与公司交易超过20万
  • 建筑企业如何预缴企业所得税
  • 事业单位专项款不能购买资产吗
  • 培养自己的php编程能力
  • 金银首饰零售业必须为一般纳税人吗
  • 完成认证后开具什么证明
  • php查询sqlserver数据库
  • 论文如何学
  • YOLOv5 + StrongSORT with OSNet
  • explorer.exe无响应桌面卡死是什么原因
  • thinkphp5上传文件
  • ssl查询网站
  • php ajax 实现
  • php getcwd与dirname(__FILE__)区别详解
  • 新建厂房的费用由谁承担
  • 学生誓词最新2022年
  • 个人给境外公司付款
  • 投资性房地产公允价值模式账务处理
  • 外商投资企业 外资企业
  • 征地费用包括
  • 销售退回的会计科目
  • 借款合同按什么缴纳印花税
  • pythonjam怎么用
  • 有外币业务需不需要交税
  • 建筑企业预缴
  • sqlmap暴力破解
  • 小规模未开票收入填在哪里
  • 企业捐赠自产产品的所得税处理
  • sql死锁的简单例子
  • 不验资实收资本怎么做账
  • 冲回上月暂估入账的商品会计分录
  • 账外资产处理
  • 上个月开的发票这个月作废如何做帐?
  • 电脑开票怎么操作流程
  • 水利建设基金可以零申报吗
  • 公司怎么变更公司名称
  • 安全配置为0
  • 在linux中使用ssh远程调试后目标板的输出在哪里
  • win7 设置
  • linux !!
  • cocos creator特效制作
  • nodejsapi框架
  • android开发环境是什么
  • shell脚本转换文件编码
  • 常用at命令集
  • perl中@_
  • 充分发挥党员的先锋模范作用,积极
  • js鼠标滚轮缩放
  • 使用androidx
  • 河南省国税电子普通发票发票真伪查询系统
  • 广西税务怎么交城乡养老保险
  • 担保机构和银行的区别
  • 无锡车辆购置税缴纳地点
  • ca用户绑定怎么绑
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设