位置: IT常识 - 正文

【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)(数据 挖掘)

编辑:rootadmin
【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)

推荐整理分享【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)(数据 挖掘),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:数据挖掘快速入门,数据挖掘视频教程,数据 挖掘,数据挖掘视频教程,数据挖掘 入门,数据挖掘 入门,数据 挖掘,数据挖掘 实战,内容如对您有帮助,希望把文章链接给更多的朋友!

项目地址:Datamining_project: 数据挖掘实战项目代码

目录

一、背景和挖掘目标

 1、问题背景

2、传统方法的不足

2、原始数据

3、挖掘目标 

二、分析方法与过程

1、初步分析

2、总体流程

第一步:数据抽取

第二步:探索分析

第三步:数据的预处理

3、构造容量预测模型

三、总结和思考

一、背景和挖掘目标 1、问题背景应用系统是由服务器、数据库、中间件、存储设备等组成。它在日常运行时,会对底层软硬件造成负荷。其中任何一种资源负载过大,都可能会引起应用系统性能下降甚至瘫痪。及时了解当前应用系统的负载情况,以便提前预防,确保系统安全稳定运行。应用系统的负载率:通过对一段时间内软硬件性能的运行状况进行综合评分而获得。负载率趋势:通过系统的当前负载率与历史平均负载率进行比较。应用系统的负载高或者负载趋势大的现象,代表系统目前处于高危工作环境中。如果系统管理员不及时进行相应的处理,系统很容易出现故障。本例重点分析磁盘容量,如果应用系统出现存储容量耗尽的情况,会导致应用系统负载率过高,最终引发故障。2、传统方法的不足系统负载分析的传统方法:通过监控采集到的性能数据以及所发出的告警事件,人为进行判断系统的负载情况。此方法虽然能够判断系统故障以及磁盘的容量情况,但是存在一些缺陷和不足:磁盘容量的情况没有提供预测的功能。只有当容量将要被耗尽时,会有告警提示。如果是告警服务器的磁盘容量被耗尽,此种情况下,系统即使出现故障,也不会有告警提示。不能提前知道系统负载的程度,只有当系统故障时,通过接受告警才得知。并且当系统真正故障的时,告警的发出大多数情况下会有一定的延迟。2、原始数据性能属性说明:针对采集的性能信息,对每个属性进行相应说明。

磁盘数据:包含应用系统、磁盘基本信息等。

3、挖掘目标 针对历史磁盘数据,采用数据挖掘的方法,预测应用系统服务器磁盘已使用空间大小;根据用户需求设置不同的预警等级,将预测值与容量值进行比较,对其结果进行预警判断,为系统管理员提供定制化的预警提示;二、分析方法与过程1、初步分析应用系统出现故障通常不是突然瘫痪造成的(除非对服务器直接断电),而是一个渐变的过程。例如系统长时间运行,数据会持续写入存储,存储空间逐渐变少,最终磁盘被写满而导致系统故障。在不考虑人为因素的影响时,存储空间随时间变化存在很强的关联性,且历史数据对未来的发展存在一定的影响,故可采用时间序列分析法对磁盘已使用空间进行预测分析。2、总体流程

第一步:数据抽取

磁盘使用情况的数据都存放在性能数据中,而监控采集的性能数据中存在大量的其他属性数据。故以属性的标识号(TARGET_ID)与采集指标的时间(COLLECTTIME)为条件,对性能数据进行抽取。

抽取10-01至11-16财务管理系统中某一台数据库服务器的磁盘的相关数据。第二步:探索分析

对数据进行周期性分析,探索数据的平稳性。

【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)(数据 挖掘)

C盘和D盘的使用的大小。 

# -*- coding:utf-8 -*-import pandas as pdimport matplotlib.pyplot as pltdata = pd.read_excel('data/discdata.xls')str1 = 'C:\\'str2 = 'D:\\'dataC = data[(data['DESCRIPTION'] == '磁盘已使用大小') & (data['ENTITY'] == str1)]dataD = data[(data['DESCRIPTION'] == '磁盘已使用大小') & (data['ENTITY'] == str2)]dataC.plot(y='VALUE')dataD.plot(y='VALUE')plt.show()第三步:数据的预处理

数据清洗:实际业务中,监控系统会每天定时对磁盘的信息进行收集,但是磁盘容量属性一般情况下都是一个定值(不考虑中途扩容的情况),因此磁盘原始数据中会存在磁盘容量的重复数据。

剔除磁盘容量的重复数据。将所有服务器的磁盘容量作为一个固定值,方便模型预警时需要。

属性构造:因每台服务器的磁盘信息可以通过表中NAME,TARGET_ID,ENTITY三个属性进行区分,且每台服务器的上述三个属性值是不变的,所以可以将三个属性的值进行合并。 (实质是将行转换成列)。

# -*-coding: utf-8-*-import pandas as pddef attr_trans(x): result = pd.Series(index=['SYS_NAME', 'CWXT_DB:184:C:\\', 'CWXT_DB:184:D:\\', 'COLLECTTIME']) result['SYS_NAME'] = x['SYS_NAME'].iloc[0] result['COLLECTTIME'] = x['COLLECTTIME'].iloc[0] result['CWXT_DB:184:C:\\'] = x['VALUE'].iloc[0] result['CWXT_DB:184:D:\\'] = x['VALUE'].iloc[1] return resultdiscfile = 'data/discdata.xls'transformeddata = 'data/discdata_processed.xls'data = pd.read_excel(discfile)data = data[data['TARGET_ID'] == 184].copy()# 按时间分组data_group = data.groupby('COLLECTTIME')data_processed = data_group.apply(attr_trans)data_processed.to_excel(transformeddata, index=False)3、构造容量预测模型

平稳性检验:为了确定原始数据序列中没有随机趋势或趋势,需要对数据进行平稳性检验,否则将会产生“伪回归”的现象。方法:单位跟检验或者观察时序图。白噪声检验:为了验证序列中有用的信息是否已被提取完毕,需要对序列进行白噪声检验。如果序列检验为白噪声序列,就说明序列中有用的信息已经被提取完毕了,剩下的全是随机扰动,无法进行预测和使用。方法:一般采用LB统计量检验方法。模型识别:通过AIC、BIC信息准则或者观测自相关图和偏自相关图确定P、Q的参数,识别其模型属于AR、MA和ARMA中的哪一种模型。参数估计:估计模型的其他参数。可以采用极大似然估计、条件最小二乘法确定。模型检验:检测模型残差序列是否属于白噪声序列。

# -*- coding:utf-8 -*-import pandas as pddef stationarityTest(): ''' 平稳性检验 :return: ''' discfile = 'data/discdata_processed.xls' predictnum = 5 data = pd.read_excel(discfile) data = data.iloc[: len(data) - predictnum] # 平稳性检验 from statsmodels.tsa.stattools import adfuller as ADF diff = 0 adf = ADF(data['CWXT_DB:184:D:\\']) while adf[1] > 0.05: diff = diff + 1 adf = ADF(data['CWXT_DB:184:D:\\'].diff(diff).dropna()) print(u'原始序列经过%s阶差分后归于平稳,p值为%s' % (diff, adf[1]))def whitenoiseTest(): ''' 白噪声检验 :return: ''' discfile = 'data/discdata_processed.xls' data = pd.read_excel(discfile) data = data.iloc[: len(data) - 5] # 白噪声检验 from statsmodels.stats.diagnostic import acorr_ljungbox [[lb], [p]] = acorr_ljungbox(data['CWXT_DB:184:D:\\'], lags=1) if p < 0.05: print(u'原始序列为非白噪声序列,对应的p值为:%s' % p) else: print(u'原始该序列为白噪声序列,对应的p值为:%s' % p) [[lb], [p]] = acorr_ljungbox(data['CWXT_DB:184:D:\\'].diff().dropna(), lags=1) if p < 0.05: print(u'一阶差分序列为非白噪声序列,对应的p值为:%s' % p) else: print(u'一阶差分该序列为白噪声序列,对应的p值为:%s' % p)def findOptimalpq(): ''' 得到模型参数 :return: ''' discfile = 'data/discdata_processed.xls' data = pd.read_excel(discfile, index_col='COLLECTTIME') data = data.iloc[: len(data) - 5] xdata = data['CWXT_DB:184:D:\\'] from statsmodels.tsa.arima_model import ARIMA # 定阶 # 一般阶数不超过length/10 pmax = int(len(xdata) / 10) qmax = int(len(xdata) / 10) # bic矩阵 bic_matrix = [] for p in range(pmax + 1): tmp = [] for q in range(qmax + 1): try: tmp.append(ARIMA(xdata, (p, 1, q)).fit().bic) except: tmp.append(None) bic_matrix.append(tmp) bic_matrix = pd.DataFrame(bic_matrix) # 先用stack展平,然后用idxmin找出最小值位置。 p, q = bic_matrix.stack().astype('float64').idxmin() print(u'BIC最小的p值和q值为:%s、%s' % (p, q))def arimaModelCheck(): ''' 模型检验 :return: ''' discfile = 'data/discdata_processed.xls' # 残差延迟个数 lagnum = 12 data = pd.read_excel(discfile, index_col='COLLECTTIME') data = data.iloc[: len(data) - 5] xdata = data['CWXT_DB:184:D:\\'] # 建立ARIMA(0,1,1)模型 from statsmodels.tsa.arima_model import ARIMA # 建立并训练模型 arima = ARIMA(xdata, (0, 1, 1)).fit() # 预测 xdata_pred = arima.predict(typ='levels') # 计算残差 pred_error = (xdata_pred - xdata).dropna() from statsmodels.stats.diagnostic import acorr_ljungbox # 白噪声检验 lb, p = acorr_ljungbox(pred_error, lags=lagnum) # p值小于0.05,认为是非白噪声。 h = (p < 0.05).sum() if h > 0: print(u'模型ARIMA(0,1,1)不符合白噪声检验') else: print(u'模型ARIMA(0,1,1)符合白噪声检验')def calErrors(): ''' 误差计算 :return: ''' # 参数初始化 file = 'data/predictdata.xls' data = pd.read_excel(file) # 计算误差 abs_ = (data[u'预测值'] - data[u'实际值']).abs() mae_ = abs_.mean() # mae rmse_ = ((abs_ ** 2).mean()) ** 0.5 mape_ = (abs_ / data[u'实际值']).mean() print(u'平均绝对误差为:%0.4f,\n均方根误差为:%0.4f,\n平均绝对百分误差为:%0.6f。' % (mae_, rmse_, mape_))stationarityTest()whitenoiseTest()findOptimalpq()arimaModelCheck()calErrors()

模型预测:应用模型进行预测,获取未来5天的预测值。为了方便比较,将单位换算成GB。

模型评价:

采用三个衡量模型预测精度的统计量指标:平均绝对误差、均方根误差、平均绝对百分误差,从不同侧面反映了算法的预测精度。

模型应用:

计算预测使用率:根据模型预测得到的值,计算预测使用率。设定预警等级:根据业务应用一般设置的阈值,也可以根据管理员要求进行相应的调整。发布预警信息三、总结和思考监控不仅能够获取软硬件的性能数据,同时也能检测到软硬件的日志事件,并通过告警的方式提示用户。因此管理员在维护系统的过程中,特别关注应用系统类别的告警。一旦系统发生故障,则会影响整个公司的运作。但是在监控收集性能以及事件的过程中,会存在各类型告警误告情况。(注:应用系统发生误告时系统实际处于正常阶段)根据历史每天的各种类型的告警数,通过相关性进行检验判断哪些类型告警与应用系统真正故障有关。通过相关类型的告警,预测明后两天的告警数。针对历史的告警数与应用系统的关系,判断系统未来是否发生故障。可通过时序算法预测未来相关类型的告警数,然后采用分类预测算法对预测值进行判断,判断系统未来是否发生故障。
本文链接地址:https://www.jiuchutong.com/zhishi/295360.html 转载请保留说明!

上一篇:HTML学生个人网站作业设计:个人主页博客web网页设计制作 (HTML+CSS) (1)(学生个人网页制作html5)

下一篇:eslint常见报错及解决(eslint不起作用)

  • 应纳税额与应纳税所得额的比率
  • 股票印花税如何计算
  • 递延所得税资产账务处理
  • 销售赠送赠品会计处理
  • 企业所得税预缴后亏损
  • 政府项目如何进项目
  • 主税零申报附加税怎样申报
  • 小规模纳税人哪些发票可以抵税
  • 购置成本和订货成本是实际发生的吗
  • 预缴增值税项目编号填写错误怎么办
  • 收购公司财务怎么交接
  • 无偿划拨资产涉税问题
  • 汽修店的服务项目有哪些
  • 以物易物方式销售货物例题
  • 上缴税费总额包括个税吗?
  • 开工程服务发票后怎么成本
  • 企业销售货物后,若发生销货退回或销售折让
  • 营改增后建筑服务包括内容
  • 劳务派遣公司是干嘛的
  • 有线电视基本收视维护费免征增值税
  • 增值是什么意思解释
  • 经营成本计算公式财务管理
  • 2021年保险营销员
  • 银行手续费回单可以作为报销
  • 所有者权益合计是负数是什么意思
  • 1697509310
  • 公司工会需要单独做账么
  • 防暑降温费会计处理
  • 票据的追索权与再追索权
  • 成本转入费用
  • 总公司人员的工资子公司可以发吗
  • phpstudy配置ftp服务器
  • 进项税额转出怎么算
  • 鱼湖国家森林中心在哪里
  • 记载资金的账簿印花税的税率是多少
  • 开发商延期交房违法吗
  • php生成条形码的代码
  • php中strcmp函数
  • 可供出售金融资产在资产负债表日反映的是
  • 位于阿曼和迪拜的大学
  • Windows下php+mysql5.7配置教程
  • 减税性质代码及名称农业
  • thinkphp6.0完全开发手册
  • 财务人离职了怎么说
  • apk文件包下载
  • 其他应付款包括应付股利和应付利息吗
  • while循环语法结构
  • 企业所得税的计算公式三种
  • 冷饮成本价
  • php调用第三方接口代码
  • jvm jmm
  • 所得税汇算清缴退税会计分录怎么做
  • mysql常用命令汇总
  • sql将一列数据变成一行显示
  • 个人建筑安装属于劳务吗
  • 建筑工程施工围挡安装
  • 未认证key
  • 预收账款是资产类科目吗
  • 建筑业暂估成本票来了后的账务处理
  • 样品定义是什么
  • 企业的研发活动阶段包括
  • 绿化补偿标准
  • 增值税专用发票的税率是多少啊
  • 小企业建账流程图
  • 巧妙设置Vista任务栏和开始菜单的属性
  • win7推送win10
  • ghost到一半报错
  • bootcamp不用u盘
  • mtask.exe - mtask是什么进程 有什么用
  • windows预览0x80072ee7
  • ugui scrollview
  • js oncontextmenu事件使用详解
  • python快速上手 自动化
  • linux shutdown命令详解
  • 网络很强大
  • 税票开错了税费怎么退回来
  • 临沭公交车多久一班
  • 2020税控盘升级后怎么使用
  • 中国采购网地胶
  • 土地增值税分期清算条件?
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设