位置: IT常识 - 正文

Diffusion-GAN: Training GANs with Diffusion 解读

编辑:rootadmin
Diffusion-GAN: Training GANs with Diffusion 解读

推荐整理分享Diffusion-GAN: Training GANs with Diffusion 解读,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 Diffusion-GAN: 将GAN与diffusion一起训练 

paper:https://arxiv.org/abs/2206.02262

code:GitHub - Zhendong-Wang/Diffusion-GAN: Official PyTorch implementation for paper: Diffusion-GAN: Training GANs with Diffusion

  第一行从左向右看是diffusion forward的过程,不断由 real image 进行 diffusion,第三行从右向左看是由noise逐步恢复成fake image的过程,第二行是鉴别器D,D对每一个timestep都进行鉴别。 

 Figure 1: Flowchart for Diffusion-GAN. The top-row images represent the forward diffusion process of a real image, while the bottom-row images represent the forward diffusion process of a generated fake image. The discriminator learns to distinguish a diffused real image from a diffused fake image at all diffusion steps.

in Figure 1. In Diffusion-GAN, the input to the diffusion process is either a real or a generated image, and the diffusion process consists of a series of steps that gradually add noise to the  image. The number of diffusion steps is not fixed, but depends on the data and the generator. We also design the diffusion process to be differentiable, which means that we can compute the derivative of the output with respect to the input. This allows us to propagate the gradient from the discriminator to the generator through the diffusion process, and update the generator accordingly. Unlike vanilla GANs, which compare the real and generated images directly, Diffusion-GAN compares the noisy versions of them, which are obtained by sampling from the Gaussian mixture distribution over the diffusion steps, with the help of our timestep-dependent discriminator. This distribution has the property that its components have different noise-to-data ratios, which means that some components add more noise than others. By sampling from this distribution, we can achieve two benefits: first, we can stabilize the training by easing the problem of vanishing gradient, which occurs when the data and generator distributions are too different; second, we can augment the data by creating different noisy versions of the same image, which can improve the data efficiency and the diversity of the generator. We provide a theoretical analysis to support our method, and show that the min-max objective function of Diffusion-GAN, which measures the difference between the data and generator distributions, is continuous and differentiable everywhere. This means that the generator in theory can always receive a useful gradient from the discriminator, and improve its performance.【G可以从D收到有用的梯度,从而提升G的性能】

主要贡献:

1) We show both theoretically and empirically how the diffusion process can be utilized to provide a model- and domain-agnostic differentiable augmentation, enabling data-efficient and leaking-free stable GAN training.【稳定了GAN的训练】 2) Extensive experiments show that Diffusion-GAN boosts the stability and generation performance of strong baselines, including StyleGAN2 , Projected GAN , and InsGen , achieving state-of-the-art results in synthesizing photo-realistic images, as measured by both the Fréchet Inception Distance (FID)  and Recall score.【diffusion提升了原始只有GAN组成的框架的性能,例如styleGAN2,Projected GAN】

Diffusion-GAN: Training GANs with Diffusion 解读

Figure 2: The toy example inherited from Arjovsky et al. [2017]. The first row plots the distributions of data with diffusion noise injected for t. The second row shows the JS divergence and the optimal discriminator value with and without our noise injection. 

Figure 4: Plot of adaptively adjusted maximum diffusion steps T and discriminator outputs of Diffusion-GANs. 

To investigate how the adaptive diffusion process works during training, we illustrate in Figure 4 the convergence of the maximum timestep T in our adaptive diffusion and discriminator outputs. We see that T is adaptively adjusted: The T for Diffusion StyleGAN2 increases as the training goes while the T for Diffusion ProjectedGAN first goes up and then goes down. Note that the T is adjusted according to the overfitting status of the discriminator. The second panel shows that trained with the diffusion-based mixture distribution, the discriminator is always well-behaved and provides useful learning signals for the generator, which validates our analysis in Section 3.4 and Theorem 1.

如图4左所示,随着训练过程的变化,扩散的timestep T也会自适应的改变(T通过鉴别器D过拟合的状态而改变); 如图4右所示,用基于扩散的混合分布训练的鉴别器总是表现良好,并为生成器G提供有用的学习信号。

Effectiveness of Diffusion-GAN for domain-agnostic augmentation(未知域增强的有效性)

25-Gaussians Example.

We conduct experiments on the popular 25-Gaussians generation task. The 25-Gaussians dataset is a 2-D toy data, generated by a mixture of 25 two-dimensional Gaussian distributions. Each data point is a 2-dimensional feature vector. We train a small GAN model, whose generator and discriminator are both parameterized by multilayer perceptrons (MLPs), with two 128-unit hidden layers and LeakyReLu nonlinearities.

Figure 5: The 25-Gaussians example. We show the true data samples, the generated samples from vanilla GANs, the discriminator outputs of the vanilla GANs, the generated samples from our Diffusion-GAN, and the discriminator outputs of Diffusion-GAN. 

(1)groundtruth数据集的数据分布,在25个Gaussians example均匀分布; (2)vanilla GANs的输出结果产生了mode collapsing,只在几个model上生成数据; (3)vanilla GANs鉴别器输出很快就会彼此分离。这意味着发生了鉴别器的强烈过拟合,使得鉴别器停止为发生器提供有用的学习信号。 (4)Diffusion-GAN在25个example上均匀分布,意味着它在所有的model上学到了采样分布; (5)Diffusion-GAN的鉴别器输出,D在持续的为G提供有用的学习信号

我们从两个角度来解释这种改进: 首先,non-leaking augmentation(无泄漏增强)有助于提供关于数据空间的更多信息;第二,自适应调整的基于扩散的噪声注入,鉴别器表现良好。

关于 Difffferentiable augmentation. (可微分增强)

As Diffusion-GAN transforms both the data and generated samples before sending them to the discriminator, we can also relate it to differentiable augmentation proposed for data-efficient GAN training. Karras et al introduce a stochastic augmentation pipeline with 18 transformationsand develop an adaptive mechanism for controlling the augmentation probability. Zhao et al. [2020] propose to use Color + Translation + Cutout as differentiable augmentations for both generated and real images.

While providing good empirical results on some datasets, these augmentation methods are developed with domain-specific knowledge and have the risk of leaking augmentation  into generation [Karras et al., 2020a]. As observed in our experiments, they sometime worsen the results when applied to a new dataset, likely because the risk of augmentation leakage overpowers the benefits of enlarging the training set, which could happen especially if the training set size is already sufficiently large.(在数据量足够大的情况下,数据增强带来的负面效果可能大于正面效果)

By contrast, Diffusion-GAN uses a differentiable forward diffusion process to stochastically transform the data and can be considered as both a domain-agnostic and a model-agnostic augmentation method. In other words, Diffusion-GAN can be applied to non-image data or even latent features, for which appropriate data augmentation is difficult to be defined, and easily plugged into an existing GAN to improve its generation performance. Moreover, we prove in theory and show in experiments that augmentation leakage is not a concern for Diffusion-GAN. Tran et al. [2021] provide a theoretical analysis for deterministic non-leaking transformation with differentiable and invertible mapping functions. Bora et al. [2018] show similar theorems to us for specific stochastic transformations, such as Gaussian Projection, Convolve+Noise, and stochastic Block-Pixels, while our Theorem 2 includes more satisfying possibilities as discussed in Appendix B.

本文链接地址:https://www.jiuchutong.com/zhishi/294494.html 转载请保留说明!

上一篇:Vue|非单文件组件(vuecli非根目录打包)

下一篇:【HTML】原生js实现的图书馆管理系统(javascript原生)

  • 退税怎么做账务处理,需要交什么税
  • 税盘收费吗
  • 农业技术服务个人总结
  • 利润率的百分比
  • 生产经营行业
  • 签订合同发放工资可以税前扣除吗?
  • 企业收到财政补助项目款
  • 企业收到退回商品的会计分录
  • 一次性付清货款要交税吗
  • 小规模纳税人专票开1%还是3%
  • 企业劳务发票怎么开,税率是多少
  • 小规模增值税多少个点
  • 普通硅酸盐水泥和矿渣硅酸盐水泥的区别
  • 业务招待费在企业所得税税前扣除的标准是什么?
  • 成本费用的结转方法
  • 支付保洁费用
  • 营业成本包括哪些会计科目
  • 删除所有没有销售业绩的员工记录
  • 财务科目明细表格模板
  • 不需要缴纳增值税和免税的区别
  • 增值税系统技术维护费需要勾选吗
  • mac怎么设置快捷图标
  • 家里的无线网连着连着就断了
  • 使用PHP similar text计算两个字符串相似度
  • 最值钱的苹果
  • 前端生成pdf文件
  • 增值税减免后按3%记提税款吗
  • 行政事业单位会计职责
  • 销售退回的增值税怎么处理
  • 一个红苹果多少钱
  • 待抵扣进项税额什么意思
  • php遍历文件夹
  • 顺流交易的会计处理
  • 发票认证相符什么意思
  • 借管理费用贷应交税费个人所得税
  • 云原生istio
  • 基础kl
  • 谁能代替你啊
  • 存续分立会计处理原则
  • 注册资本增加了怎么做账
  • 委托境外机构销售开发产品
  • 销售佣金 会计分录
  • Mysql数据库查询客户端
  • 残保金都要申报吗
  • 所得税费用怎样算出来的
  • 小规模纳税人免增值税的账务处理
  • 发票跨月还可以作废吗
  • 自然人独资企业需要交企业所得税吗
  • 代开发票相关问答有什么?
  • 资产负债表的固定资产怎么算出来的
  • 代缴社保费怎么做分录
  • 罚款属于应付账款吗
  • 小规模减免的增值税要交所得税吗
  • 收到税局退款
  • 采购固定资产怎么做账
  • 工程款多付了如何追回
  • 增值税普通发票和电子普通发票的区别
  • 收到暂估跨年发票怎么办
  • 招待客人的住宿叫什么
  • 空调的折旧年限一般是多少年
  • 虚拟模块
  • 企业所得税里的利润总额按什么填写
  • 原始凭证留存几年
  • 现金日记账的登记日期以什么日期为标准?
  • centos6.2安装
  • win10系统浏览器在哪
  • freebsd操作命令
  • centos 6.5安装教程
  • win7更新和安全在哪里
  • linux分区方案lvm
  • linux系统的服务器有哪些
  • 原生javascript开发
  • 脚本语言教程
  • Strumpy Shader Editor入门教程
  • js的点击事件怎么做
  • 补充协议需要双方签字盖章吗
  • 酒店访客时间是几个小时
  • 税费算在房价里
  • 查询完毕
  • 电子发票查询平台打印
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设