位置: IT常识 - 正文

Diffusion-GAN: Training GANs with Diffusion 解读

编辑:rootadmin
Diffusion-GAN: Training GANs with Diffusion 解读

推荐整理分享Diffusion-GAN: Training GANs with Diffusion 解读,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 Diffusion-GAN: 将GAN与diffusion一起训练 

paper:https://arxiv.org/abs/2206.02262

code:GitHub - Zhendong-Wang/Diffusion-GAN: Official PyTorch implementation for paper: Diffusion-GAN: Training GANs with Diffusion

  第一行从左向右看是diffusion forward的过程,不断由 real image 进行 diffusion,第三行从右向左看是由noise逐步恢复成fake image的过程,第二行是鉴别器D,D对每一个timestep都进行鉴别。 

 Figure 1: Flowchart for Diffusion-GAN. The top-row images represent the forward diffusion process of a real image, while the bottom-row images represent the forward diffusion process of a generated fake image. The discriminator learns to distinguish a diffused real image from a diffused fake image at all diffusion steps.

in Figure 1. In Diffusion-GAN, the input to the diffusion process is either a real or a generated image, and the diffusion process consists of a series of steps that gradually add noise to the  image. The number of diffusion steps is not fixed, but depends on the data and the generator. We also design the diffusion process to be differentiable, which means that we can compute the derivative of the output with respect to the input. This allows us to propagate the gradient from the discriminator to the generator through the diffusion process, and update the generator accordingly. Unlike vanilla GANs, which compare the real and generated images directly, Diffusion-GAN compares the noisy versions of them, which are obtained by sampling from the Gaussian mixture distribution over the diffusion steps, with the help of our timestep-dependent discriminator. This distribution has the property that its components have different noise-to-data ratios, which means that some components add more noise than others. By sampling from this distribution, we can achieve two benefits: first, we can stabilize the training by easing the problem of vanishing gradient, which occurs when the data and generator distributions are too different; second, we can augment the data by creating different noisy versions of the same image, which can improve the data efficiency and the diversity of the generator. We provide a theoretical analysis to support our method, and show that the min-max objective function of Diffusion-GAN, which measures the difference between the data and generator distributions, is continuous and differentiable everywhere. This means that the generator in theory can always receive a useful gradient from the discriminator, and improve its performance.【G可以从D收到有用的梯度,从而提升G的性能】

主要贡献:

1) We show both theoretically and empirically how the diffusion process can be utilized to provide a model- and domain-agnostic differentiable augmentation, enabling data-efficient and leaking-free stable GAN training.【稳定了GAN的训练】 2) Extensive experiments show that Diffusion-GAN boosts the stability and generation performance of strong baselines, including StyleGAN2 , Projected GAN , and InsGen , achieving state-of-the-art results in synthesizing photo-realistic images, as measured by both the Fréchet Inception Distance (FID)  and Recall score.【diffusion提升了原始只有GAN组成的框架的性能,例如styleGAN2,Projected GAN】

Diffusion-GAN: Training GANs with Diffusion 解读

Figure 2: The toy example inherited from Arjovsky et al. [2017]. The first row plots the distributions of data with diffusion noise injected for t. The second row shows the JS divergence and the optimal discriminator value with and without our noise injection. 

Figure 4: Plot of adaptively adjusted maximum diffusion steps T and discriminator outputs of Diffusion-GANs. 

To investigate how the adaptive diffusion process works during training, we illustrate in Figure 4 the convergence of the maximum timestep T in our adaptive diffusion and discriminator outputs. We see that T is adaptively adjusted: The T for Diffusion StyleGAN2 increases as the training goes while the T for Diffusion ProjectedGAN first goes up and then goes down. Note that the T is adjusted according to the overfitting status of the discriminator. The second panel shows that trained with the diffusion-based mixture distribution, the discriminator is always well-behaved and provides useful learning signals for the generator, which validates our analysis in Section 3.4 and Theorem 1.

如图4左所示,随着训练过程的变化,扩散的timestep T也会自适应的改变(T通过鉴别器D过拟合的状态而改变); 如图4右所示,用基于扩散的混合分布训练的鉴别器总是表现良好,并为生成器G提供有用的学习信号。

Effectiveness of Diffusion-GAN for domain-agnostic augmentation(未知域增强的有效性)

25-Gaussians Example.

We conduct experiments on the popular 25-Gaussians generation task. The 25-Gaussians dataset is a 2-D toy data, generated by a mixture of 25 two-dimensional Gaussian distributions. Each data point is a 2-dimensional feature vector. We train a small GAN model, whose generator and discriminator are both parameterized by multilayer perceptrons (MLPs), with two 128-unit hidden layers and LeakyReLu nonlinearities.

Figure 5: The 25-Gaussians example. We show the true data samples, the generated samples from vanilla GANs, the discriminator outputs of the vanilla GANs, the generated samples from our Diffusion-GAN, and the discriminator outputs of Diffusion-GAN. 

(1)groundtruth数据集的数据分布,在25个Gaussians example均匀分布; (2)vanilla GANs的输出结果产生了mode collapsing,只在几个model上生成数据; (3)vanilla GANs鉴别器输出很快就会彼此分离。这意味着发生了鉴别器的强烈过拟合,使得鉴别器停止为发生器提供有用的学习信号。 (4)Diffusion-GAN在25个example上均匀分布,意味着它在所有的model上学到了采样分布; (5)Diffusion-GAN的鉴别器输出,D在持续的为G提供有用的学习信号

我们从两个角度来解释这种改进: 首先,non-leaking augmentation(无泄漏增强)有助于提供关于数据空间的更多信息;第二,自适应调整的基于扩散的噪声注入,鉴别器表现良好。

关于 Difffferentiable augmentation. (可微分增强)

As Diffusion-GAN transforms both the data and generated samples before sending them to the discriminator, we can also relate it to differentiable augmentation proposed for data-efficient GAN training. Karras et al introduce a stochastic augmentation pipeline with 18 transformationsand develop an adaptive mechanism for controlling the augmentation probability. Zhao et al. [2020] propose to use Color + Translation + Cutout as differentiable augmentations for both generated and real images.

While providing good empirical results on some datasets, these augmentation methods are developed with domain-specific knowledge and have the risk of leaking augmentation  into generation [Karras et al., 2020a]. As observed in our experiments, they sometime worsen the results when applied to a new dataset, likely because the risk of augmentation leakage overpowers the benefits of enlarging the training set, which could happen especially if the training set size is already sufficiently large.(在数据量足够大的情况下,数据增强带来的负面效果可能大于正面效果)

By contrast, Diffusion-GAN uses a differentiable forward diffusion process to stochastically transform the data and can be considered as both a domain-agnostic and a model-agnostic augmentation method. In other words, Diffusion-GAN can be applied to non-image data or even latent features, for which appropriate data augmentation is difficult to be defined, and easily plugged into an existing GAN to improve its generation performance. Moreover, we prove in theory and show in experiments that augmentation leakage is not a concern for Diffusion-GAN. Tran et al. [2021] provide a theoretical analysis for deterministic non-leaking transformation with differentiable and invertible mapping functions. Bora et al. [2018] show similar theorems to us for specific stochastic transformations, such as Gaussian Projection, Convolve+Noise, and stochastic Block-Pixels, while our Theorem 2 includes more satisfying possibilities as discussed in Appendix B.

本文链接地址:https://www.jiuchutong.com/zhishi/294494.html 转载请保留说明!

上一篇:Vue|非单文件组件(vuecli非根目录打包)

下一篇:【HTML】原生js实现的图书馆管理系统(javascript原生)

  • 微信怎么查看自己支付密码(微信怎么查看自己撤回的消息)

    微信怎么查看自己支付密码(微信怎么查看自己撤回的消息)

  • 拼多多怎么删除银行卡绑定呢(拼多多怎么删除评价)

    拼多多怎么删除银行卡绑定呢(拼多多怎么删除评价)

  • 网络正常抖音无法连接的原因是什么(网络正常抖音无法连接)

    网络正常抖音无法连接的原因是什么(网络正常抖音无法连接)

  • 智慧视觉可以卸载吗(智慧视觉可以卸载掉吗)

    智慧视觉可以卸载吗(智慧视觉可以卸载掉吗)

  • 微信怎么把聊天记录发给别人所有的(微信怎么把聊天记录导入新手机)

    微信怎么把聊天记录发给别人所有的(微信怎么把聊天记录导入新手机)

  • 拼多多新人提示仅可购买一次(拼多多新人提示在哪里看)

    拼多多新人提示仅可购买一次(拼多多新人提示在哪里看)

  • 软件不兼容是什么意思(软件不兼容是什么问题)

    软件不兼容是什么意思(软件不兼容是什么问题)

  • 淘宝标品和非标品的区别(淘宝标品和非标品的运营重点是什么)

    淘宝标品和非标品的区别(淘宝标品和非标品的运营重点是什么)

  • 探探自己照片能保存吗(探探自己照片能删除吗)

    探探自己照片能保存吗(探探自己照片能删除吗)

  • 微信收取中一直转圈圈(微信收取一直转)

    微信收取中一直转圈圈(微信收取一直转)

  • 手机淘宝待付款怎么取消订单(手机淘宝待付款的东西怎么删除)

    手机淘宝待付款怎么取消订单(手机淘宝待付款的东西怎么删除)

  • 苹果7plus手写输入法在哪里设置(iphone7plus手写)

    苹果7plus手写输入法在哪里设置(iphone7plus手写)

  • nova6 5g和4g的区别(nova6 5g和4g的区别手机壳)

    nova6 5g和4g的区别(nova6 5g和4g的区别手机壳)

  • 键盘转换中文用哪个键(键盘上转换中文)

    键盘转换中文用哪个键(键盘上转换中文)

  • iPad怎么看ppt(iPad怎么看内存)

    iPad怎么看ppt(iPad怎么看内存)

  • 网络电视怎么找中央1(网络电视怎么找不到搜索栏)

    网络电视怎么找中央1(网络电视怎么找不到搜索栏)

  • 支付宝怎么关闭人脸支付(支付宝怎么关闭自动扣款)

    支付宝怎么关闭人脸支付(支付宝怎么关闭自动扣款)

  • 快手不能发哪些敏感词(快手不能发哪些东西)

    快手不能发哪些敏感词(快手不能发哪些东西)

  • 步多多如何修改目标步数(步多多可以更换手机号码)

    步多多如何修改目标步数(步多多可以更换手机号码)

  • 铅酸电池有记忆效应吗(铅酸电池有记忆性吗)

    铅酸电池有记忆效应吗(铅酸电池有记忆性吗)

  • 怎么看自己是不是别人的特别关心(怎么看自己是不是多囊)

    怎么看自己是不是别人的特别关心(怎么看自己是不是多囊)

  • 点云3D目标检测之——尝试SFD代码跑通(超详细!!)(点云目标检测数据集)

    点云3D目标检测之——尝试SFD代码跑通(超详细!!)(点云目标检测数据集)

  • 企业所得税的纳税人发生年度亏损的时间
  • 其他应付款和其他应付款可以重分类
  • 购入不动产进项税额抵扣
  • 水利建设专项收入的税率是多少?
  • 银行结息计入什么费用
  • 个体工商户网上报税流程
  • 可供出售金融资产新准则叫什么
  • 过路费普通发票可以抵税吗
  • 这个月只有进项没有销项
  • 仲裁费用计入什么会计科目
  • 个人承包集体企业历史
  • 个人转到公司账上的钱能开发票吗
  • 半成品成本核算 一般企业怎么核算
  • 增值税一般纳税人税率
  • 金税盘费用如何抵扣
  • 去税务局税种认定需要带什么资料
  • 残保金补报
  • 销售商品收到商业汇票属于什么科目
  • 计提应付利息编制记账凭证用什么原始凭证?
  • 农村合作社收到奖金分录
  • 高薪补贴需要交什么税
  • 小企业递延收益计算公式
  • 公司新增注册资本
  • 新版edge浏览器历史记录
  • 主营业务成本算损益类科目吗
  • 高新企业开办费是多少
  • 查账征收的个独可以随意分配利润吗
  • 用车平台服务费怎么入账
  • 个人劳务费几个点
  • 企业职工工伤赔偿标准
  • 大陆公司如何开离岸账户
  • linux鼠标左键失灵
  • PHP:pg_field_prtlen()的用法_PostgreSQL函数
  • PHP:mcrypt_generic_init()的用法_Mcrypt函数
  • php文件乱码怎么办
  • spring boot 接受参数
  • php代码规范七大原则
  • 社会保险费征收机构责令限期缴纳
  • 服务费可以暂估成本吗
  • web前端框架是什么
  • 长期待摊费用装修费摊销年限
  • 企业在建工程领用原材料的会计分录
  • 建筑工程拨款流程
  • 代理付银行手续费合法吗
  • 没有购销合同的原因有哪些
  • 税控系统减免税
  • 待处理财产损益是备抵类科目吗
  • 税务师考试的报名时间
  • 用评估增值的资产增资
  • 在建工程的预付款账务处理
  • 公司购入的财务会计分录
  • 冲抵和抵扣
  • 建筑公司工程按什么收费
  • 国外工程合同类型
  • 小企业会计准则和一般企业会计准则的区别
  • 一般纳税人购货取得普通发票
  • 金蝶系统如何设置套打
  • 产品出库检验报告单格式
  • mysql按时间查询
  • win8怎么自动修复
  • window10注册表
  • xp系统怎么连接电脑
  • hosts文件位置在哪
  • win7磁盘c满了怎么办却又分不清哪些是该删除
  • 如何去掉windows7开机密码
  • linux shell alias
  • nicconfigsvc.exe - nicconfigsvc是什么进程 有什么用
  • win7如何设置语言输入
  • linux shell怎么用
  • bat基本语法
  • 有关表格边框的快捷键
  • 使用shell命令
  • flask完整项目实例
  • 关于android工程中的assets目录的正确说法
  • 安卓瀑布流
  • Flow之一个新的Javascript静态类型检查器
  • 湖南省国家税务总局官网登录入口
  • 个人经营所得申报时间
  • 公司欠税款,还不上,怎么办
  • 湖南什么时候实行电子驾驶证
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设