位置: IT常识 - 正文

Diffusion-GAN: Training GANs with Diffusion 解读

编辑:rootadmin
Diffusion-GAN: Training GANs with Diffusion 解读

推荐整理分享Diffusion-GAN: Training GANs with Diffusion 解读,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 Diffusion-GAN: 将GAN与diffusion一起训练 

paper:https://arxiv.org/abs/2206.02262

code:GitHub - Zhendong-Wang/Diffusion-GAN: Official PyTorch implementation for paper: Diffusion-GAN: Training GANs with Diffusion

  第一行从左向右看是diffusion forward的过程,不断由 real image 进行 diffusion,第三行从右向左看是由noise逐步恢复成fake image的过程,第二行是鉴别器D,D对每一个timestep都进行鉴别。 

 Figure 1: Flowchart for Diffusion-GAN. The top-row images represent the forward diffusion process of a real image, while the bottom-row images represent the forward diffusion process of a generated fake image. The discriminator learns to distinguish a diffused real image from a diffused fake image at all diffusion steps.

in Figure 1. In Diffusion-GAN, the input to the diffusion process is either a real or a generated image, and the diffusion process consists of a series of steps that gradually add noise to the  image. The number of diffusion steps is not fixed, but depends on the data and the generator. We also design the diffusion process to be differentiable, which means that we can compute the derivative of the output with respect to the input. This allows us to propagate the gradient from the discriminator to the generator through the diffusion process, and update the generator accordingly. Unlike vanilla GANs, which compare the real and generated images directly, Diffusion-GAN compares the noisy versions of them, which are obtained by sampling from the Gaussian mixture distribution over the diffusion steps, with the help of our timestep-dependent discriminator. This distribution has the property that its components have different noise-to-data ratios, which means that some components add more noise than others. By sampling from this distribution, we can achieve two benefits: first, we can stabilize the training by easing the problem of vanishing gradient, which occurs when the data and generator distributions are too different; second, we can augment the data by creating different noisy versions of the same image, which can improve the data efficiency and the diversity of the generator. We provide a theoretical analysis to support our method, and show that the min-max objective function of Diffusion-GAN, which measures the difference between the data and generator distributions, is continuous and differentiable everywhere. This means that the generator in theory can always receive a useful gradient from the discriminator, and improve its performance.【G可以从D收到有用的梯度,从而提升G的性能】

主要贡献:

1) We show both theoretically and empirically how the diffusion process can be utilized to provide a model- and domain-agnostic differentiable augmentation, enabling data-efficient and leaking-free stable GAN training.【稳定了GAN的训练】 2) Extensive experiments show that Diffusion-GAN boosts the stability and generation performance of strong baselines, including StyleGAN2 , Projected GAN , and InsGen , achieving state-of-the-art results in synthesizing photo-realistic images, as measured by both the Fréchet Inception Distance (FID)  and Recall score.【diffusion提升了原始只有GAN组成的框架的性能,例如styleGAN2,Projected GAN】

Diffusion-GAN: Training GANs with Diffusion 解读

Figure 2: The toy example inherited from Arjovsky et al. [2017]. The first row plots the distributions of data with diffusion noise injected for t. The second row shows the JS divergence and the optimal discriminator value with and without our noise injection. 

Figure 4: Plot of adaptively adjusted maximum diffusion steps T and discriminator outputs of Diffusion-GANs. 

To investigate how the adaptive diffusion process works during training, we illustrate in Figure 4 the convergence of the maximum timestep T in our adaptive diffusion and discriminator outputs. We see that T is adaptively adjusted: The T for Diffusion StyleGAN2 increases as the training goes while the T for Diffusion ProjectedGAN first goes up and then goes down. Note that the T is adjusted according to the overfitting status of the discriminator. The second panel shows that trained with the diffusion-based mixture distribution, the discriminator is always well-behaved and provides useful learning signals for the generator, which validates our analysis in Section 3.4 and Theorem 1.

如图4左所示,随着训练过程的变化,扩散的timestep T也会自适应的改变(T通过鉴别器D过拟合的状态而改变); 如图4右所示,用基于扩散的混合分布训练的鉴别器总是表现良好,并为生成器G提供有用的学习信号。

Effectiveness of Diffusion-GAN for domain-agnostic augmentation(未知域增强的有效性)

25-Gaussians Example.

We conduct experiments on the popular 25-Gaussians generation task. The 25-Gaussians dataset is a 2-D toy data, generated by a mixture of 25 two-dimensional Gaussian distributions. Each data point is a 2-dimensional feature vector. We train a small GAN model, whose generator and discriminator are both parameterized by multilayer perceptrons (MLPs), with two 128-unit hidden layers and LeakyReLu nonlinearities.

Figure 5: The 25-Gaussians example. We show the true data samples, the generated samples from vanilla GANs, the discriminator outputs of the vanilla GANs, the generated samples from our Diffusion-GAN, and the discriminator outputs of Diffusion-GAN. 

(1)groundtruth数据集的数据分布,在25个Gaussians example均匀分布; (2)vanilla GANs的输出结果产生了mode collapsing,只在几个model上生成数据; (3)vanilla GANs鉴别器输出很快就会彼此分离。这意味着发生了鉴别器的强烈过拟合,使得鉴别器停止为发生器提供有用的学习信号。 (4)Diffusion-GAN在25个example上均匀分布,意味着它在所有的model上学到了采样分布; (5)Diffusion-GAN的鉴别器输出,D在持续的为G提供有用的学习信号

我们从两个角度来解释这种改进: 首先,non-leaking augmentation(无泄漏增强)有助于提供关于数据空间的更多信息;第二,自适应调整的基于扩散的噪声注入,鉴别器表现良好。

关于 Difffferentiable augmentation. (可微分增强)

As Diffusion-GAN transforms both the data and generated samples before sending them to the discriminator, we can also relate it to differentiable augmentation proposed for data-efficient GAN training. Karras et al introduce a stochastic augmentation pipeline with 18 transformationsand develop an adaptive mechanism for controlling the augmentation probability. Zhao et al. [2020] propose to use Color + Translation + Cutout as differentiable augmentations for both generated and real images.

While providing good empirical results on some datasets, these augmentation methods are developed with domain-specific knowledge and have the risk of leaking augmentation  into generation [Karras et al., 2020a]. As observed in our experiments, they sometime worsen the results when applied to a new dataset, likely because the risk of augmentation leakage overpowers the benefits of enlarging the training set, which could happen especially if the training set size is already sufficiently large.(在数据量足够大的情况下,数据增强带来的负面效果可能大于正面效果)

By contrast, Diffusion-GAN uses a differentiable forward diffusion process to stochastically transform the data and can be considered as both a domain-agnostic and a model-agnostic augmentation method. In other words, Diffusion-GAN can be applied to non-image data or even latent features, for which appropriate data augmentation is difficult to be defined, and easily plugged into an existing GAN to improve its generation performance. Moreover, we prove in theory and show in experiments that augmentation leakage is not a concern for Diffusion-GAN. Tran et al. [2021] provide a theoretical analysis for deterministic non-leaking transformation with differentiable and invertible mapping functions. Bora et al. [2018] show similar theorems to us for specific stochastic transformations, such as Gaussian Projection, Convolve+Noise, and stochastic Block-Pixels, while our Theorem 2 includes more satisfying possibilities as discussed in Appendix B.

本文链接地址:https://www.jiuchutong.com/zhishi/294494.html 转载请保留说明!

上一篇:Vue|非单文件组件(vuecli非根目录打包)

下一篇:【HTML】原生js实现的图书馆管理系统(javascript原生)

  • 荣耀x10max有3.5mm耳机孔吗(荣耀x10max有红外线功能吗)

    荣耀x10max有3.5mm耳机孔吗(荣耀x10max有红外线功能吗)

  • 一加7t手机是2k屏吗

    一加7t手机是2k屏吗

  • 小米手环里面的钱可以退嘛(小米手环里面的那款好一点)

    小米手环里面的钱可以退嘛(小米手环里面的那款好一点)

  • 华为手机微信截图怎么选择部分(华为手机微信截屏怎么隐藏头像)

    华为手机微信截图怎么选择部分(华为手机微信截屏怎么隐藏头像)

  • 朋友圈下载原图失败怎么回事(朋友圈下载原图怎么弄)

    朋友圈下载原图失败怎么回事(朋友圈下载原图怎么弄)

  • 华为侧边栏怎么打开(华为侧边栏怎么删除应用)

    华为侧边栏怎么打开(华为侧边栏怎么删除应用)

  • 轻颜怎么设置5分钟长视频(轻颜怎么设置适合自己的)

    轻颜怎么设置5分钟长视频(轻颜怎么设置适合自己的)

  • oled和lcd的区别(oled 和lcd的区别)

    oled和lcd的区别(oled 和lcd的区别)

  • 拼多多怎么选择多种款式(拼多多怎么选择快递公司)

    拼多多怎么选择多种款式(拼多多怎么选择快递公司)

  • 三款iphone11区别(iphone11各款区别)

    三款iphone11区别(iphone11各款区别)

  • 微信被冻住了什么时候可以用(微信被冻结了还能正常使用吗)

    微信被冻住了什么时候可以用(微信被冻结了还能正常使用吗)

  • 网络正常为什么微信发不出信息(网络正常为什么连接不到app store)

    网络正常为什么微信发不出信息(网络正常为什么连接不到app store)

  • 荣耀9x语音助手怎么唤醒(荣耀9x语音助手怎么改名)

    荣耀9x语音助手怎么唤醒(荣耀9x语音助手怎么改名)

  • 清空购物车是啥意思(清空购物车2020规则)

    清空购物车是啥意思(清空购物车2020规则)

  • 苹果手机开不了机充电没反应怎么办(苹果手机开不了无线网怎么回事)

    苹果手机开不了机充电没反应怎么办(苹果手机开不了无线网怎么回事)

  • 转转拍卖保留价是什么意思(转转拍卖保证金是多少)

    转转拍卖保留价是什么意思(转转拍卖保证金是多少)

  • 菜鸟垫付账户的钱在哪(菜鸟垫付账户的钱怎么取)

    菜鸟垫付账户的钱在哪(菜鸟垫付账户的钱怎么取)

  • 手机最上面一栏叫什么(手机最上面一栏靠左了怎么办)

    手机最上面一栏叫什么(手机最上面一栏靠左了怎么办)

  • 美团账单记录怎么删除(美团的账单在哪)

    美团账单记录怎么删除(美团的账单在哪)

  • 怎么把微信开机启动关闭(怎么把微信开机密码取消)

    怎么把微信开机启动关闭(怎么把微信开机密码取消)

  • 华为手机拍照实况怎么用(华为手机拍照实物识别在哪里)

    华为手机拍照实况怎么用(华为手机拍照实物识别在哪里)

  • 怎么把照片分辨率调低(怎么把照片分辨率改为300)

    怎么把照片分辨率调低(怎么把照片分辨率改为300)

  • vivox27能反向充电吗(vivox27能不能反向充电)

    vivox27能反向充电吗(vivox27能不能反向充电)

  • 录制视频怎么加音乐(录制视频怎么加字幕)

    录制视频怎么加音乐(录制视频怎么加字幕)

  • 5g哪个国家领先(5g网络哪个国家最先进)

    5g哪个国家领先(5g网络哪个国家最先进)

  • 微信小程序云开发之收藏文章功能的简单实现(微信小程序云开发控制台)

    微信小程序云开发之收藏文章功能的简单实现(微信小程序云开发控制台)

  • 实际退税额怎么算
  • 两处取得工资的成语
  • 增值税专票和普票的区别税率
  • 车辆购置税会计核算
  • 移动怎么开当月发票
  • 永久性差异什么是暂时性差异
  • 发票上有字迹可以拿去作废吗
  • 折旧会影响利润表吗
  • 机票发票打印有效期多久
  • 出售交易性金融资产的交易费用计入
  • 新会计准则土地使用权摊销处理
  • 劳务派遣差额计税公式
  • 长期投资换入固定资产如何处理
  • 打桩和挖土
  • 发票进项转出账务怎么做
  • 个人开增值税普票有没有限额
  • 无形资产有使用期限
  • 待摊费用核算的内容主要包括
  • 季度不超过30万免税分录
  • 出口退税过期了怎么办理
  • 进项票与实际支出金额不符
  • 减免税额科目有没有余额
  • 合同结算账务处理分录
  • 你知道约定的公司有哪些
  • php ftp功能
  • 生产车间报表表格图片
  • 办公室装修入账
  • 用友预收货款账务处理
  • 补充养老保险的特点
  • php time
  • 命令行基础
  • php和ajax用哪个调用数据
  • Python 高性能 pdf
  • 从零开始作者
  • 如何在Android中找到关闭的文件
  • dpkg --list
  • Python中如何定义一个变量
  • java 泛型方法
  • 车辆过完户保险还能下浮吗
  • 工伤保险赔偿范围和企业承担范围
  • 所得税主要特点有
  • 单位代扣公积金是什么意思
  • 小规模首次申请发票张数
  • 勾选了不抵扣还能抵扣
  • 业务招待费进项票可以抵扣吗
  • 卖家电的税点是多少呀
  • 存货报废进项税转出分录
  • 个体工商户要进行汇算清缴吗
  • 国有企业无偿划转股权缴纳印花税
  • 开建筑工程公司赚钱吗
  • 教育费附加免征额
  • 库存商品用于投资
  • 纳税申报准备什么材料
  • 企业产值什么意思
  • 买断式回购交易情况
  • 银行对账单和回单有什么区别
  • windows2003服务不能开启
  • Windows Server 2008添加Hyper-V组件
  • torch.cuda.set_device
  • 虚拟机增加磁盘选择物理磁盘分区
  • intel x86 arm
  • Win10 Mobile首个RS2预览版14905快速版今日开始推送
  • 电脑老是弹出提示
  • win8怎么快速开机
  • 置顶txt
  • shell生成excel文件
  • Activity的生命周期和页面之间的传递
  • unity random.value
  • 2012 05-26 Unity3D研究院之两种方式播放游戏视频(二十五) 雨松MOMO
  • jabsorb笔记_几个小例子第1/2页
  • 代收代付税务条件
  • 税务文书档案保管期限
  • 广西增值税发票查询平台
  • 广西税务登记查询网站
  • 增值税申报表更正申报期限
  • 土地增值税计税
  • 增值税减免税备案
  • 慰问金能直接转账吗
  • 机票验真查询系统
  • 内江市税务局
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设