位置: IT常识 - 正文

GPT模型总结【模型结构及计算过程_详细说明】(gpt详解)

编辑:rootadmin
GPT模型总结【模型结构及计算过程_详细说明】 GPT模型

推荐整理分享GPT模型总结【模型结构及计算过程_详细说明】(gpt详解),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:gpt3 模型大小,gpt2模型大小,gpt3 模型大小,gpd模型,gpt3模型结构,gpt-2模型,gpt 模型,gpt 模型,内容如对您有帮助,希望把文章链接给更多的朋友!

GPT模型:生成式预训练模型(Generative Pre-Training)

总体结构:

无监督的预训练 有监督的下游任务精调

核心结构:中间部分主要由12个Transformer Decoder的block堆叠而成

下面这张图更直观地反映了模型的整体结构:

模型描述

GPT 使用 Transformer的 Decoder 结构,并对 Transformer Decoder 进行了一些改动,原本的 Decoder 包含了两个 Multi-Head Attention 结构,GPT 只保留了 Mask Multi-Head Attention,如下图所示。 (很多资料上说类似于decoder结构,因为采用了decoder的mask机制,不过抛开这一点,其实感觉和encoder会更像,所以实现时有时反而是调encoder实现 莫烦Python GPT实现代码)

对比原有transformer的结构

阶段描述预训练阶段:

预训练阶段为文本预测,即根据已有的历史词预测当前时刻的词,7-2,7-3,7-4三个式子对应之前的GPT结构图,输出P(x)为输出,每个词被预测到的概率,再利用7-1式,计算最大似然函数,据此构造损失函数,即可以对该语言模型进行优化。

下游任务精调阶段

损失函数

下游任务与上游任务损失的线性组合

计算过程:输入Embedding多层transformer的block拿到两个输出端结果计算损失反向传播更新参数

一个具体的GPT实例代码: 可以看到GPT模型的forward函数中,首先进行Embedding操作,然后经过12层transformer的block中进行运算,然后分别经过两个线性变换得到最终计算值(一个用于文本预测,一个用于任务分类器),代码与最开始展示的模型结构图保持一致。 参考:莫烦Python GPT实现代码 下面我们着重关注计算步骤2, 3

计算细节:【Embedding层】:GPT模型总结【模型结构及计算过程_详细说明】(gpt详解)

查表操作 Embedding层就是以one hot为输入、中间层节点为字向量维数的全连接层。而这个全连接层的参数,就是一个“字向量表”。 one hot型的矩阵相乘,就像是相当于查表,于是它直接用查表作为操作,而不写成矩阵再运算,这大大降低了运算量。再次强调,降低了运算量不是因为词向量的出现,而是因为把one hot型的矩阵运算简化为了查表操作。

【GPT中类似transformer的decoder层】:

每个decoder层包含两个子层

sublayer1: mask的多头注意力层sublayer2: ffn (feed-forward network)前馈网络(多层感知机)sublayer1:mask的多头注意力层

输入: q, k, v, mask 计算注意力:Linear(矩阵乘法)→Scaled Dot-Product Attention→Concat(多个注意力的结果, reshape )→Linear(矩阵乘法)

残差连接和归一化操作:Dropout操作→残差连接→层归一化操作

计算过程:

下面这段内容介绍了计算注意力的整体过程:

分解说明:Mask Multi-head Attention1.矩阵乘法:

将输入的q,k,v进行变换

2.Scaled Dot-Product Attention

主要就是进行attention的计算以及mask的操作 Mask操作:masked_fill_(mask, value) 掩码操作,用value填充tensor中与mask中值为1位置相对应的元素。mask的形状必须与要填充的tensor形状一致。(这里采用-inf填充,从而softmax之后变成0,相当于看不见后面的词) transformer中的mask操作

mask后可视化矩阵: 直观理解是每个词只能看到它之前的词(因为目的就是要预测未来的词嘛,要是看到了就不用预测了)

3.Concat操作:

综合多个注意力头的结果,实际上是对矩阵做变换:permute,reshape操作,降维。(如下图红框中所示)

4.矩阵乘法:一个Linear层,对注意力结果线性变换

整个mask多头注意力层的代码: 注意到:上述代码中后面几行是对注意力结果进行残差连接和归一化操作 下说明这一过程:

残差连接和归一化操作:5.Dropout层6.矩阵加法7.层归一化

批量归一化是不同训练数据之间对单个神经元的归一化,层归一化是单个训练数据对某一层所有神经元之间的归一化。 输入归一化、批量归一化(BN)与层归一化(LN)

代码展示:

sublayer2: ffn (feed-forward network)前馈网络1.线性层(矩阵乘法)2.relu函数激活3.线性层(矩阵乘法)4.Dropout操作5.层归一化

【线性层】:

多层block的输出结果放到两个线性层中进行变换,比较简单,不做赘述。

补充:注意力层流程图示

参考资料

1.参考论文:Radford et al. 《Improving Language Undersatnding by Generative Pre-Training"》 2.参考书籍:《自然语言处理 基于预训练模型的方法》车万翔,郭江,崔一鸣 3.本文中代码来源:莫烦Python GPT实现代码 4.其它参考链接(博文中已提到部分): word embedding计算过程剖析 Transformer的矩阵维度分析和Mask详解

本文链接地址:https://www.jiuchutong.com/zhishi/293129.html 转载请保留说明!

上一篇:LangChain与大型语言模型(LLMs)应用基础教程:信息抽取

下一篇:CSS: overflow-anchor 固定滚动到底部,随着页面内容增多滚动条自己滚动展示最新的内容

  • 暂时进出境货物和暂准进出境货物
  • 二手车需要交哪些额外的钱
  • 小额转款
  • 银行存款产生的利息怎么写分录
  • 如何查看发票是否被抵扣
  • 退回的附加税能退回来吗
  • 营业额和合同额的区别
  • 财务报表可以补充分类吗
  • 出口退税不退税则征税
  • 受托开发软件产品免征增值税
  • 增值税发票密码忘记了怎么办
  • 成本利润率多少倍
  • 公司如何向税务部门举报
  • 公司单独买医保
  • 房产税入哪个科目
  • 百旺金赋服务费280元发票在哪里开
  • 关联申报不报有影响吗
  • 公司用的冰箱
  • 电器供应
  • 增值税普票当月开错了怎么办
  • 展厅设计费用计什么科目
  • 本期预收的货款属于
  • 个税经营所得申报怎么更正
  • 玩游戏网络延时高怎么处理
  • 公司租房可以抵扣个人所得税吗
  • 生产成本结转库存商品的数量
  • 坏老狼告诉我们什么道理
  • 如何将iphone照片导入电脑里
  • 微星主板bios更新黑屏
  • 录制权限怎么打开
  • 进程process
  • 什么是主营业务税金及附加
  • 销售退回会计处理与税务处理
  • 原 !神静态网页布局详解,html+css布局实战,附详细代码
  • php官方微信接口有哪些
  • 非营利组织增值税
  • 一般纳税人的好处和坏处
  • 3d人体骨骼模型软件
  • 应付账款盘点表
  • 怎么保证发票是真的
  • 向境外企业支付咨询费
  • 员工休产假不发工资违法吗
  • 冲减多计提的工资怎么做账
  • vuex 3
  • 织梦怎么样
  • 收到税务局退税怎么入账
  • 冲减实收资本是什么意思
  • 营业费用占比
  • 公司把钱打到银行了,银行未打到我工资卡
  • 融资租赁汽车怎么投诉电话
  • 六大类科目的借贷口诀余额怎么填
  • 油票发票在报销单上怎么填写
  • 其他综合收益属于什么科目借贷
  • 进口医疗器械产品
  • 跨年冲红发票账务处理需要调整申报表吗
  • 建账时必须输入的内容有哪些
  • 商品流通的企业
  • 大型商业企业
  • sql server怎么修改表中数据
  • mysql5717安装及配置超详细教程
  • linux运行级别定义在
  • 防火墙监视模式
  • 怎么才能使牙齿变白
  • 关闭空闲的ide通知怎么写
  • 请问usb是什么意思啊
  • win7无法访问局域网电脑
  • win10系统如何查看激活状态
  • win7系统ctfmon在哪个文件夹
  • logd是什么进程
  • Linux系统怎么设置窗口关闭按键在右侧
  • Android OpenGL ES(三)----编程框架
  • Unity3D游戏开发毕业论文
  • shell脚本一百例
  • node优秀库
  • javascript判断浏览器
  • win10的安装方式有哪些
  • 地税客服电话
  • 股权转让是否要交土地增值税
  • 西安市乱占耕地建房
  • 如果我是科学家我会发明什么
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设