位置: IT常识 - 正文

TensorFlow安装教程(tensorflow安装教程pycharm)

编辑:rootadmin
TensorFlow安装教程

推荐整理分享TensorFlow安装教程(tensorflow安装教程pycharm),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:tensorflow安装教程,tensorflow安装教程pycharm,tensorflow安装教程演讲,tensorflow安装教程windows,tensorflow安装教程CPU,tensorflow安装教程CPU,tensorflow安装教程CPU,tensorflow安装教程windows,内容如对您有帮助,希望把文章链接给更多的朋友!

诸神缄默不语-个人CSDN博文目录

TensorFlow是学习深度学习时常用的Python神经网络框架,本文将介绍其部分版本在Linux系统使用pip进行安装的方法。 (注:TensorFlow官方推荐使用pip进行安装。)

作者使用anaconda作为管理虚拟环境的工具。以下工作都在虚拟环境中进行,对Python和Aanaconda的安装及对虚拟环境的管理本文不作赘述,后期可能会撰写相关的博文。

首先进入官网:TensorFlow TensorFlow安装的总界面:Install TensorFlow 2

文章目录1. TensorFlow 2最新版安装(本文撰写时为2.9.0)2. TensorFlow 1.14 + Keras 2.3.1(安装时间:2022.8.17)3. 其他本文撰写过程中使用的参考资料1. TensorFlow 2最新版安装(本文撰写时为2.9.0)

官方安装指南:Install TensorFlow 2 用pip安装的指南:Install TensorFlow with pip TensorFlow基础的系统环境等要求可直接在该网站上查看,已经2022年了,一般电脑都不会这么老吧。

新建anaconda虚拟环境:conda create -n envtf2 python==3.8(Python版本需要是3.7-3.10,本文以3.8为例,主要是因为我需要用3.8版本来安装另一个包) 激活虚拟环境:conda activate envtf2 如果要使用cuda,首先确定本机安装有NVIDIA GPU driver:nvidia-smi(一般都会有的吧,没有的话到得了这一步吗) 安装指定的cudatoolkit和cudnn版本:conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 有两种指定配置路径的方式: ①临时的,每次会话都需要先激活虚拟环境然后:export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/ ②自动在每次激活虚拟环境后执行此操作(我没有试过,我一直都用的是上面那种方式):

mkdir -p $CONDA_PREFIX/etc/conda/activate.decho 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh

更新pip:pip install --upgrade pip 安装TensorFlow:pip install tensorflow 检验CPU版TensorFlow是否可用:python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))" (我的服务器有4张卡) 检验GPU版TensorFlow是否可用:python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

注意,以上操作是在终端上进行的,不能直接放到jupyter notebook。一个失败的例子: 在jupyter notebook上,我直接调用!export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/也不行,用os.environ['LD_LIBRARY_PATH']也不行,用$env也不行,就把我整得相当困惑。我看了一下,好像如果用jupyter notebook的话就必须要修改jupyter内核才能用,但是我修改了jupyter kernelspec list路径中的kernel.json后仍然不行。(参考自python - How to set env variable in Jupyter notebook - Stack Overflow) 其他我在网上有看到一些使用全局配置解决此问题的方法,但是我这个服务器上还需要运行别的版本的别的项目,总之不太方便用这个。一般来说我对此问题的解决方法就是不用jupyter notebook来跑TF项目。我看的这些资料可资参考: 解决TensorFlow在terminal中正常但在jupyter notebook中报错的方案 - stardsd - 博客园 Add CUDA Library Path to Jupyterhub Notebook - AIML - wiki.ucar.edu install pytorch with jupyter - 知乎

所以jupyter notebook上要成功使用TensorFlow GPU功能的话就必须要先在命令行上激活虚拟环境,然后export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/,然后调用jupyter notebook命令打开jupyter notebook,这样就能直接正常使用了。 (注意:如果仅安装了ipykernel包,那么VSCode中可以打开notebook文件,但是无法使用jupyter notebook打开能够在浏览器中打开的网页,因此需要安装jupyterlab:pip install jupyterlab(参考Project Jupyter | Installing Jupyter)。VSCode即使在远程服务器上也可以把端口转到本地使用localhost域名在本地浏览器打开,挺方便的) 运行成功的效果:

2. TensorFlow 1.14 + Keras 2.3.1(安装时间:2022.8.17)

这个是苏神bert4keras(https://github.com/bojone/bert4keras)的配置。

TensorFlow安装教程(tensorflow安装教程pycharm)

见TensorFlow官网(使用 pip 安装 TensorFlow),仅TensorFlow2.2以上支持Python3.8以上,所以我需要一个Python3.7的环境。 新建anaconda虚拟环境:conda create -n envtf114 python=3.7 pip 安装GPU版TensorFlow:pip install tensorflow-gpu==1.14

试用如下代码(来自tensorflow-gpu1.14代码测试_爱听许嵩歌的博客-CSDN博客_tensorflow-gpu测试代码):

import tensorflow as tfwith tf.device('/cpu:0'): a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')with tf.device('/gpu:2'): c = a + b# 注意:allow_soft_placement=True表明:计算设备可自行选择,如果没有这个参数,会报错。# 因为不是所有的操作都可以被放在GPU上,如果强行将无法放在GPU上的操作指定到GPU上,将会报错。sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True))# sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))sess.run(tf.global_variables_initializer())print(sess.run(c))

报错:

Traceback (most recent call last): File "trytf1.py", line 1, in <module> import tensorflow as tf File "env_path/lib/python3.7/site-packages/tensorflow/__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "env_path/lib/python3.7/site-packages/tensorflow/python/__init__.py", line 52, in <module> from tensorflow.core.framework.graph_pb2 import * File "env_path/lib/python3.7/site-packages/tensorflow/core/framework/graph_pb2.py", line 16, in <module> from tensorflow.core.framework import node_def_pb2 as tensorflow_dot_core_dot_framework_dot_node__def__pb2 File "env_path/lib/python3.7/site-packages/tensorflow/core/framework/node_def_pb2.py", line 16, in <module> from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2 File "env_path/lib/python3.7/site-packages/tensorflow/core/framework/attr_value_pb2.py", line 16, in <module> from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2 File "env_path/lib/python3.7/site-packages/tensorflow/core/framework/tensor_pb2.py", line 16, in <module> from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2 File "env_path/lib/python3.7/site-packages/tensorflow/core/framework/resource_handle_pb2.py", line 42, in <module> serialized_options=None, file=DESCRIPTOR), File "/home/wanghuijuan/anaconda3/envs/envtf114/lib/python3.7/site-packages/google/protobuf/descriptor.py", line 560, in __new__ _message.Message._CheckCalledFromGeneratedFile()TypeError: Descriptors cannot not be created directly.If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates

嗯虽然不知道发生了什么总之我从善如流地照着改(参考1. Downgrade the protobuf package to 3.20.x or lower._weixin_44834086的博客-CSDN博客):

pip install protobuf==3.19.0

然后重新运行代码,这回的输出信息变成了:

env_path/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)])env_path/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)])env_path/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)])env_path/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)])env_path/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)])env_path/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)])env_path/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)])env_path/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)])env_path/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)])env_path/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)])env_path/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)])env_path/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)])WARNING:tensorflow:From trytf1.py:11: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.WARNING:tensorflow:From trytf1.py:11: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.2022-08-17 15:27:08.829308: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA2022-08-17 15:27:08.865801: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1800000000 Hz2022-08-17 15:27:08.867967: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55f031fff480 executing computations on platform Host. Devices:2022-08-17 15:27:08.868039: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined>2022-08-17 15:27:08.871550: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.12022-08-17 15:27:09.628470: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55f0332f1040 executing computations on platform CUDA. Devices:2022-08-17 15:27:09.628540: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): Tesla T4, Compute Capability 7.52022-08-17 15:27:09.628560: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (1): Tesla T4, Compute Capability 7.52022-08-17 15:27:09.628580: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (2): Tesla T4, Compute Capability 7.52022-08-17 15:27:09.628597: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (3): Tesla T4, Compute Capability 7.52022-08-17 15:27:09.645921: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties: name: Tesla T4 major: 7 minor: 5 memoryClockRate(GHz): 1.59pciBusID: 0000:3b:00.02022-08-17 15:27:09.650885: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 1 with properties: name: Tesla T4 major: 7 minor: 5 memoryClockRate(GHz): 1.59pciBusID: 0000:5e:00.02022-08-17 15:27:09.652426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 2 with properties: name: Tesla T4 major: 7 minor: 5 memoryClockRate(GHz): 1.59pciBusID: 0000:b1:00.02022-08-17 15:27:09.653863: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 3 with properties: name: Tesla T4 major: 7 minor: 5 memoryClockRate(GHz): 1.59pciBusID: 0000:d9:00.02022-08-17 15:27:09.654104: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory2022-08-17 15:27:09.654223: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory2022-08-17 15:27:09.654332: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory2022-08-17 15:27:09.654437: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory2022-08-17 15:27:09.654540: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory2022-08-17 15:27:09.654661: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory2022-08-17 15:27:09.740681: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.72022-08-17 15:27:09.740741: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1663] Cannot dlopen some GPU libraries. Skipping registering GPU devices...2022-08-17 15:27:09.740824: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:2022-08-17 15:27:09.740848: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0 1 2 3 2022-08-17 15:27:09.740868: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N Y Y Y 2022-08-17 15:27:09.740886: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 1: Y N Y Y 2022-08-17 15:27:09.740904: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 2: Y Y N Y 2022-08-17 15:27:09.740921: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 3: Y Y Y N Device mapping:/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:1 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:2 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:3 -> device: XLA_GPU device2022-08-17 15:27:09.742912: I tensorflow/core/common_runtime/direct_session.cc:296] Device mapping:/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:1 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:2 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:3 -> device: XLA_GPU deviceWARNING:tensorflow:From trytf1.py:13: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.add: (Add): /job:localhost/replica:0/task:0/device:CPU:02022-08-17 15:27:09.746145: I tensorflow/core/common_runtime/placer.cc:54] add: (Add)/job:localhost/replica:0/task:0/device:CPU:0init: (NoOp): /job:localhost/replica:0/task:0/device:CPU:02022-08-17 15:27:09.746214: I tensorflow/core/common_runtime/placer.cc:54] init: (NoOp)/job:localhost/replica:0/task:0/device:CPU:0a: (Const): /job:localhost/replica:0/task:0/device:CPU:02022-08-17 15:27:09.746257: I tensorflow/core/common_runtime/placer.cc:54] a: (Const)/job:localhost/replica:0/task:0/device:CPU:0b: (Const): /job:localhost/replica:0/task:0/device:CPU:02022-08-17 15:27:09.746294: I tensorflow/core/common_runtime/placer.cc:54] b: (Const)/job:localhost/replica:0/task:0/device:CPU:02022-08-17 15:27:09.748161: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU. To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.[2. 4. 6.]

其他略,总之那一堆无法打开so文件就说明cuda安装有问题,无法使用GPU。

TensorFlow版本对应GPU版本(图源https://www.tensorflow.org/install/source#gpu): 所以首先安装所需的cudnn和cuda:conda install -c conda-forge cudatoolkit=10.0 cudnn=7.4

报了个非常诡异的bug:

Collecting package metadata (current_repodata.json): doneSolving environment: failed with initial frozen solve. Retrying with flexible solve.Collecting package metadata (repodata.json): failed# >>>>>>>>>>>>>>>>>>>>>> ERROR REPORT <<<<<<<<<<<<<<<<<<<<<< Traceback (most recent call last): File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 700, in _update_chunk_length self.chunk_left = int(line, 16) ValueError: invalid literal for int() with base 16: b'' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 441, in _error_catcher yield File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 767, in read_chunked self._update_chunk_length() File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 704, in _update_chunk_length raise InvalidChunkLength(self, line) urllib3.exceptions.InvalidChunkLength: InvalidChunkLength(got length b'', 0 bytes read) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "anaconda3/lib/python3.9/site-packages/requests/models.py", line 760, in generate for chunk in self.raw.stream(chunk_size, decode_content=True): File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 575, in stream for line in self.read_chunked(amt, decode_content=decode_content): File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 796, in read_chunked self._original_response.close() File "anaconda3/lib/python3.9/contextlib.py", line 137, in __exit__ self.gen.throw(typ, value, traceback) File "anaconda3/lib/python3.9/site-packages/urllib3/response.py", line 458, in _error_catcher raise ProtocolError("Connection broken: %r" % e, e) urllib3.exceptions.ProtocolError: ("Connection broken: InvalidChunkLength(got length b'', 0 bytes read)", InvalidChunkLength(got length b'', 0 bytes read)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "anaconda3/lib/python3.9/site-packages/conda/exceptions.py", line 1114, in __call__ return func(*args, **kwargs) File "anaconda3/lib/python3.9/site-packages/conda/cli/main.py", line 86, in main_subshell exit_code = do_call(args, p) File "anaconda3/lib/python3.9/site-packages/conda/cli/conda_argparse.py", line 90, in do_call return getattr(module, func_name)(args, parser) File "anaconda3/lib/python3.9/site-packages/conda/cli/main_install.py", line 20, in execute install(args, parser, 'install') File "anaconda3/lib/python3.9/site-packages/conda/cli/install.py", line 259, in install unlink_link_transaction = solver.solve_for_transaction( File "anaconda3/lib/python3.9/site-packages/conda/core/solve.py", line 152, in solve_for_transaction unlink_precs, link_precs = self.solve_for_diff(update_modifier, deps_modifier, File "anaconda3/lib/python3.9/site-packages/conda/core/solve.py", line 195, in solve_for_diff final_precs = self.solve_final_state(update_modifier, deps_modifier, prune, ignore_pinned, File "anaconda3/lib/python3.9/site-packages/conda/core/solve.py", line 300, in solve_final_state ssc = self._collect_all_metadata(ssc) File "anaconda3/lib/python3.9/site-packages/conda/common/io.py", line 86, in decorated return f(*args, **kwds) File "anaconda3/lib/python3.9/site-packages/conda/core/solve.py", line 463, in _collect_all_metadata index, r = self._prepare(prepared_specs) File "anaconda3/lib/python3.9/site-packages/conda/core/solve.py", line 1058, in _prepare reduced_index = get_reduced_index(self.prefix, self.channels, File "anaconda3/lib/python3.9/site-packages/conda/core/index.py", line 287, in get_reduced_index new_records = SubdirData.query_all(spec, channels=channels, subdirs=subdirs, File "anaconda3/lib/python3.9/site-packages/conda/core/subdir_data.py", line 139, in query_all result = tuple(concat(executor.map(subdir_query, channel_urls))) File "anaconda3/lib/python3.9/concurrent/futures/_base.py", line 609, in result_iterator yield fs.pop().result() File "anaconda3/lib/python3.9/concurrent/futures/_base.py", line 446, in result return self.__get_result() File "anaconda3/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result raise self._exception File "anaconda3/lib/python3.9/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "anaconda3/lib/python3.9/site-packages/conda/core/subdir_data.py", line 131, in <lambda> subdir_query = lambda url: tuple(SubdirData(Channel(url), repodata_fn=repodata_fn).query( File "anaconda3/lib/python3.9/site-packages/conda/core/subdir_data.py", line 144, in query self.load() File "anaconda3/lib/python3.9/site-packages/conda/core/subdir_data.py", line 209, in load _internal_state = self._load() File "anaconda3/lib/python3.9/site-packages/conda/core/subdir_data.py", line 374, in _load raw_repodata_str = fetch_repodata_remote_request( File "anaconda3/lib/python3.9/site-packages/conda/core/subdir_data.py", line 700, in fetch_repodata_remote_request resp = session.get(join_url(url, filename), headers=headers, proxies=session.proxies, File "anaconda3/lib/python3.9/site-packages/requests/sessions.py", line 542, in get return self.request('GET', url, **kwargs) File "anaconda3/lib/python3.9/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "anaconda3/lib/python3.9/site-packages/requests/sessions.py", line 687, in send r.content File "anaconda3/lib/python3.9/site-packages/requests/models.py", line 838, in content self._content = b''.join(self.iter_content(CONTENT_CHUNK_SIZE)) or b'' File "anaconda3/lib/python3.9/site-packages/requests/models.py", line 763, in generate raise ChunkedEncodingError(e) requests.exceptions.ChunkedEncodingError: ("Connection broken: InvalidChunkLength(got length b'', 0 bytes read)", InvalidChunkLength(got length b'', 0 bytes read))`$ /home/wanghuijuan/anaconda3/bin/conda install -c conda-forge cudatoolkit=10.0 cudnn=7.4` environment variables: CIO_TEST=<not set> CONDA_DEFAULT_ENV= CONDA_EXE=anaconda3/bin/conda CONDA_PREFIX= CONDA_PREFIX_1=anaconda3 CONDA_PREFIX_2= CONDA_PROMPT_MODIFIER=() CONDA_PYTHON_EXE=anaconda3/bin/python CONDA_ROOT=anaconda3 CONDA_SHLVL=3 CURL_CA_BUNDLE=<not set> PATH=/anaconda3/condabin:/home/wanghuijuan/.vscode -server/bin/6d9b74a70ca9c7733b29f0456fd8195364076dda/bin/remote-cli:/u sr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games: /usr/local/games:/snap/bin REQUESTS_CA_BUNDLE=<not set> SSL_CERT_FILE=<not set> active environment : active env location : shell level : 3 user config file : .condarc populated config files : conda version : 4.13.0 conda-build version : 3.21.8 python version : 3.9.12.final.0 virtual packages : __cuda=11.4=0 __linux=4.15.0=0 __glibc=2.27=0 __unix=0=0 __archspec=1=x86_64 base environment :anaconda3 (writable) conda av data dir :anaconda3/etc/conda conda av metadata url : None channel URLs : https://conda.anaconda.org/conda-forge/linux-64 https://conda.anaconda.org/conda-forge/noarch https://repo.anaconda.com/pkgs/main/linux-64 https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/linux-64 https://repo.anaconda.com/pkgs/r/noarch package cache : /home/wanghuijuan/anaconda3/pkgs /home/wanghuijuan/.conda/pkgs envs directories : /home/wanghuijuan/anaconda3/envs /home/wanghuijuan/.conda/envs platform : linux-64 user-agent : conda/4.13.0 requests/2.27.1 CPython/3.9.12 Linux/4.15.0-136-generic ubuntu/18.04.4 glibc/2.27 UID:GID : 1018:1014 netrc file : None offline mode : FalseAn unexpected error has occurred. Conda has prepared the above report.If submitted, this report will be used by core maintainers to improvefuture releases of conda.Would you like conda to send this report to the core maintainers?[y/N]: yUpload did not complete.Thank you for helping to improve conda.Opt-in to always sending reports (and not see this message again)by running $ conda config --set report_errors true

不知道发生了什么,总之换一种安装方式好了(参考TensorFlow-gpu安装和测试(TensorFlow-gpu1.14+Cuda10)_爱学习的小龙的博客-CSDN博客_tensorflowgpu测试):

wget -P files/install_packages https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudatoolkit-10.0.130-0.condaconda install files/install_packages/cudatoolkit-10.0.130-0.conda

重新运行Python代码。和之前一样的输出部分就不写了,直接从不一样的地方开始:

2022-08-17 16:15:43.407219: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.02022-08-17 16:15:43.409338: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.02022-08-17 16:15:43.411111: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.02022-08-17 16:15:43.411878: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.02022-08-17 16:15:43.415478: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.02022-08-17 16:15:43.418072: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.02022-08-17 16:15:43.424901: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.72022-08-17 16:15:43.435064: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0, 1, 2, 32022-08-17 16:15:43.435492: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.02022-08-17 16:15:43.441476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:2022-08-17 16:15:43.442070: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0 1 2 3 2022-08-17 16:15:43.442448: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N Y Y Y 2022-08-17 16:15:43.443431: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 1: Y N Y Y 2022-08-17 16:15:43.444206: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 2: Y Y N Y 2022-08-17 16:15:43.444586: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 3: Y Y Y N 2022-08-17 16:15:43.452440: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2446 MB memory) -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:3b:00.0, compute capability: 7.5)2022-08-17 16:15:43.462938: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5244 MB memory) -> physical GPU (device: 1, name: Tesla T4, pci bus id: 0000:5e:00.0, compute capability: 7.5)2022-08-17 16:15:43.469831: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 14259 MB memory) -> physical GPU (device: 2, name: Tesla T4, pci bus id: 0000:b1:00.0, compute capability: 7.5)2022-08-17 16:15:43.483509: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 14259 MB memory) -> physical GPU (device: 3, name: Tesla T4, pci bus id: 0000:d9:00.0, compute capability: 7.5)Device mapping:/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:1 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:2 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:3 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla T4, pci bus id: 0000:3b:00.0, compute capability: 7.5/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla T4, pci bus id: 0000:5e:00.0, compute capability: 7.5/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla T4, pci bus id: 0000:b1:00.0, compute capability: 7.5/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla T4, pci bus id: 0000:d9:00.0, compute capability: 7.52022-08-17 16:15:43.490300: I tensorflow/core/common_runtime/direct_session.cc:296] Device mapping:/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:1 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:2 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:XLA_GPU:3 -> device: XLA_GPU device/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla T4, pci bus id: 0000:3b:00.0, compute capability: 7.5/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla T4, pci bus id: 0000:5e:00.0, compute capability: 7.5/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla T4, pci bus id: 0000:b1:00.0, compute capability: 7.5/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla T4, pci bus id: 0000:d9:00.0, compute capability: 7.5WARNING:tensorflow:From /home/wanghuijuan/whj_code1/trytf1.py:13: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.add: (Add): /job:localhost/replica:0/task:0/device:GPU:22022-08-17 16:15:43.495600: I tensorflow/core/common_runtime/placer.cc:54] add: (Add)/job:localhost/replica:0/task:0/device:GPU:2init: (NoOp): /job:localhost/replica:0/task:0/device:GPU:02022-08-17 16:15:43.495642: I tensorflow/core/common_runtime/placer.cc:54] init: (NoOp)/job:localhost/replica:0/task:0/device:GPU:0a: (Const): /job:localhost/replica:0/task:0/device:CPU:02022-08-17 16:15:43.495664: I tensorflow/core/common_runtime/placer.cc:54] a: (Const)/job:localhost/replica:0/task:0/device:CPU:0b: (Const): /job:localhost/replica:0/task:0/device:CPU:02022-08-17 16:15:43.495682: I tensorflow/core/common_runtime/placer.cc:54] b: (Const)/job:localhost/replica:0/task:0/device:CPU:0[2. 4. 6.]

运行TensorFlow代码时需要在代码前加上这些:

import tensorflow as tfimport osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "2" #这里是gpu的序号,指定使用的gpu对象config = tf.ConfigProto()config.gpu_options.allow_growth = True

Keras就自动安装好了。

直接用bert4keras代码来举个实际用例:

pip install bert4keraswget -P /data/pretrained_model/chinese_L-12_H-768_A-12 https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zipunzip /data/pretrained_model/chinese_L-12_H-768_A-12/chinese_L-12_H-768_A-12.zip -d /data/pretrained_model/chinese_L-12_H-768_A-12

代码(改自https://github.com/bojone/bert4keras/blob/master/examples/basic_extract_features.py):

import osos.environ["CUDA_VISIBLE_DEVICES"] = "2"import timeimport numpy as npfrom bert4keras.backend import kerasfrom bert4keras.models import build_transformer_modelfrom bert4keras.tokenizers import Tokenizerfrom bert4keras.snippets import to_arrayconfig_path = '/data/pretrained_model/chinese_L-12_H-768_A-12/chinese_L-12_H-768_A-12/bert_config.json'checkpoint_path = '/data/pretrained_model/chinese_L-12_H-768_A-12/chinese_L-12_H-768_A-12/bert_model.ckpt'dict_path = '/data/pretrained_model/chinese_L-12_H-768_A-12/chinese_L-12_H-768_A-12/vocab.txt'tokenizer = Tokenizer(dict_path, do_lower_case=True) # 建立分词器model = build_transformer_model(config_path, checkpoint_path) # 建立模型,加载权重# 编码测试token_ids, segment_ids = tokenizer.encode(u'语言模型')token_ids, segment_ids = to_array([token_ids], [segment_ids])print('\n ===== predicting =====\n')print(model.predict([token_ids, segment_ids]))"""输出:[[[-0.63251007 0.2030236 0.07936534 ... 0.49122632 -0.20493352 0.2575253 ] [-0.7588351 0.09651865 1.0718756 ... -0.6109694 0.04312154 0.03881441] [ 0.5477043 -0.792117 0.44435206 ... 0.42449304 0.41105673 0.08222899] [-0.2924238 0.6052722 0.49968526 ... 0.8604137 -0.6533166 0.5369075 ] [-0.7473459 0.49431565 0.7185162 ... 0.3848612 -0.74090636 0.39056838] [-0.8741375 -0.21650358 1.338839 ... 0.5816864 -0.4373226 0.56181806]]]"""time.sleep(100)

time.sleep()命令是为了停留一下,显式用nvidia-smi命令看这个程序只在卡2上占用空间,以及具体占用了多大的GPU(占了14G,还是相当大的)

3. 其他本文撰写过程中使用的参考资料tensorflow 1.14指定gpu运行设置_愚昧之山绝望之谷开悟之坡的博客-CSDN博客_tensorflow指定gpu
本文链接地址:https://www.jiuchutong.com/zhishi/290892.html 转载请保留说明!

上一篇:Web大学生网页作业成品——易购商城网站设计与实现(HTML+CSS+JavaScript)(大学网页制作作业dw)

下一篇:德拉海滩Wakodahatchee湿地的大蓝鹭,佛罗里达州 (© Marie Hickman/Getty Images)(海滨德拉海滩庄园别墅)

  • 2017最新微信公众号加粉丝的方法(新版微信公众平台)

    2017最新微信公众号加粉丝的方法(新版微信公众平台)

  • 华为hry-al00是什么型号(华为hry_al00a是什么型号)

    华为hry-al00是什么型号(华为hry_al00a是什么型号)

  • 电脑桌面图标如何移动(电脑桌面图标如何自动补位)

    电脑桌面图标如何移动(电脑桌面图标如何自动补位)

  • ai取消锁定快捷键(ai取消锁定图片快捷键)

    ai取消锁定快捷键(ai取消锁定图片快捷键)

  • 怎么看群里退出的人(怎么看群里退出的群聊)

    怎么看群里退出的人(怎么看群里退出的群聊)

  • 电脑数学键盘打不出数字键怎么办(电脑数学键盘打不了字)

    电脑数学键盘打不出数字键怎么办(电脑数学键盘打不了字)

  • 华为nova7se手机怎么截屏(华为nova7se手机空调遥控器在哪里)

    华为nova7se手机怎么截屏(华为nova7se手机空调遥控器在哪里)

  • 小米网关的作用是什么(小米网关有什么作用)

    小米网关的作用是什么(小米网关有什么作用)

  • 10.2寸ipad是什么型号(ipad 10.2英寸属于ipad几)

    10.2寸ipad是什么型号(ipad 10.2英寸属于ipad几)

  • 快手实验室集猫猫怎么关闭(快手实验室在什么地方)

    快手实验室集猫猫怎么关闭(快手实验室在什么地方)

  • pr剪辑出现红色一帧怎么解决(pr剪辑时总是出现红色)

    pr剪辑出现红色一帧怎么解决(pr剪辑时总是出现红色)

  • qq里密保手机号码是什么意思(qq密保手机号码不用了怎么找回密码)

    qq里密保手机号码是什么意思(qq密保手机号码不用了怎么找回密码)

  • opporeno3pro电池不耐用(opporeno3pro电池不耐用充电快)

    opporeno3pro电池不耐用(opporeno3pro电池不耐用充电快)

  • 为啥苹果11手机充电很慢(为啥苹果11手机接不到电话)

    为啥苹果11手机充电很慢(为啥苹果11手机接不到电话)

  • 打印机自动双面打印是什么意思(打印机自动双面复印)

    打印机自动双面打印是什么意思(打印机自动双面复印)

  • word如何缩进字符间距(word中如何缩进字符)

    word如何缩进字符间距(word中如何缩进字符)

  • excle视图分为哪几种(excel2010视图)

    excle视图分为哪几种(excel2010视图)

  • word如何取消双页编辑(word如何取消双行合一)

    word如何取消双页编辑(word如何取消双行合一)

  • iecee是什么认证(iec 认证)

    iecee是什么认证(iec 认证)

  • 手机怎么下歌到内存卡(手机怎么下歌到∪盘)

    手机怎么下歌到内存卡(手机怎么下歌到∪盘)

  • 解决小米手机mmi码无效(解决小米手机发烫的方法)

    解决小米手机mmi码无效(解决小米手机发烫的方法)

  • iPhone11有耳机吗(苹果11有耳机吗?)

    iPhone11有耳机吗(苹果11有耳机吗?)

  • qq音乐哪里看登录设备(qq音乐怎么查看登陆了什么设备)

    qq音乐哪里看登录设备(qq音乐怎么查看登陆了什么设备)

  • macbook下载的文件在哪里(macbook下载的文件怎么删除)

    macbook下载的文件在哪里(macbook下载的文件怎么删除)

  • 美团众包常驻点怎么改(美团众包常驻点怎么取消设置)

    美团众包常驻点怎么改(美团众包常驻点怎么取消设置)

  • 全民k歌约唱动态怎么发(全民k歌的约歌在哪里找)

    全民k歌约唱动态怎么发(全民k歌的约歌在哪里找)

  • 企业会议app开发有何优势(会议系统开发)

    企业会议app开发有何优势(会议系统开发)

  • Win10 Build 18363.1350/17763.1728累积更新补丁KB4598298正式推送

    Win10 Build 18363.1350/17763.1728累积更新补丁KB4598298正式推送

  • 笔记本电脑保养维护(笔记本电脑保养常识电池)

    笔记本电脑保养维护(笔记本电脑保养常识电池)

  • 什么是差额税金
  • 各行业的税负率表2022
  • 企业如何代扣代缴劳务报酬所得税
  • 房产税的纳税义务人是征税范围内房屋产权所有人
  • 缓交的社保费,包括个人部分
  • 关税计入存货成本分录
  • 年利润100万要交多少企业所得税
  • 研发加计扣除减免税
  • 个体户雇佣临时工
  • 补交以前年度增值税的科目处理
  • 停工损耗会计分录怎么写
  • 年度销售返利的计算方法
  • 税款返点如何做财务处理呢?
  • 变更许可证情况说明书模板
  • 汇算清缴残保金填哪里
  • 图书出版费开票怎么开
  • 建筑企业在四库一平台找不到
  • 补偿金满一年不满一年半
  • 怎样申请退税费
  • 民间非营利组织会计制度及操作实务
  • 开票的时候开票人是管理员
  • 财产行为税税种
  • win10右键个性化提示该文件没有与之关联
  • 计提本月应交未交增值税
  • 对公账户开户费开户的时候就要交钱吗
  • PHP:oci_field_size()的用法_Oracle函数
  • 期间费用的含义
  • 企业所得税季度申报表营业收入怎么填写
  • 哪些税改将影响家庭个人财富
  • 加载分页
  • 包装费包含什么
  • 税收优惠与政府补助对于企业研发来说哪个优惠力度大
  • 重分类调整分录汇总表什么情况填写
  • 公司帮非公司员工缴税
  • js调用自己
  • 织梦栏目描述调用
  • 出口货物不能退税的账务处理
  • 银行询证函快递费计入什么科目
  • 计提增值税的会计凭证
  • 税务局退回来的钱账务处理
  • 房产税的征收范围和标准有哪些
  • 增值税进项加计抵减怎么计算
  • 扶贫资金是如何发放的
  • 一般纳税人购入需要安装的生产设备,其入账价值包括
  • 收到项目资本金入什么科目
  • 物业管理企业会计核算的特点如何?
  • 专家劳务费可以在手机操作吗
  • 批发零售进销存软件免费版
  • 收到退回货物
  • 职工报销的医药费是什么
  • 工装费用制度
  • 计提的费用收到发票时候怎么做账
  • 无票收入是怎么算的
  • 本月损益类未结转为零的一级科目怎么操作
  • 发票额开多了多出的金额怎么处理?
  • 房地产公司车位出租会计分录
  • 零售业赠送给别人怎么做
  • 代账公司帮客户开发票
  • 企业期货投资收益要交所得税吗
  • 外贸公司收取国家税费吗
  • 个体户做账流程新手必看
  • 建筑公司没有资质可以注册建造师吗
  • 提供劳务的收入计入什么科目
  • mysql 含有关键字
  • win10系统预览版
  • 优化什么建立生育支持政策体系
  • mac怎么保存网页到桌面
  • calc.exe是什么程序
  • xp系统必备软件
  • windows8用户名怎么改
  • win8如何使用word
  • win10添加开机启动项
  • 调用perl脚本
  • javascript总结笔记
  • JavaScript中的this
  • python的介绍
  • 内蒙古国家税务局网上电子税务局官网
  • 河北省社保证明网上查询
  • 长沙买房后多久可以提取公积金
  • 新一轮税制改革的背景是什么
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设