位置: IT常识 - 正文

LIO-SAM学习与运行测试数据集

编辑:rootadmin
LIO-SAM学习与运行测试数据集 文章目录0. 说明0.1 环境配置说明0.2 LIO-SAM0.3 系统架构0.4 LIO-SAM youtube视频演示:Rotation Dataset:Walking Dataset:Park Dataset:Campus Dataset:Amsterdam Dataset:stress test:1. 编译与运行1.1 依赖1.2 gstam1.2 安装1.3 运行(1) launch文件:(2) 播放数据包:2 lidar和imu数据准备2.1 准备lidar数据2.1.1 提供点云的时间戳2.1.2 提供点所在环号(point ring number)2.2 准备imu数据(1)imu准备(2)imu对齐alignment(3)imu调试3 样例数据集3.1 可使用默认设置运行的数据集(1)数据集(2)公园数据集3.2 需要配置参数的数据集3.3 Ouster (OS1-128) 数据集--Rooftop dataset(1)数据集描述(2)准备工作(3)自己运行(4)自我体会3.4 Livox Horizon数据集--Livox Horizon(1)说明:(2)配置(3)自己运行(4)自我体会3.5 KITTI 数据集--2011_09_30_drive_0028(1)数据集描述(2)数据集外部参数修改(3)github参考建图效果(4)自己运行(5)自我体会4 其他说明4.1 params.yaml0. 说明0.1 环境配置说明

推荐整理分享LIO-SAM学习与运行测试数据集,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

环境配置: ubuntu18.04, ros1(ros-melodic) 注: 在ros1的kinetic, melodic, noetic(https://github.com/TixiaoShan/LIO-SAM/issues/206)上被测试过; ros1的github代码: https://github.com/TixiaoShan/LIO-SAM/tree/master ros2的github代码: https://github.com/TixiaoShan/LIO-SAM/tree/ros2

0.2 LIO-SAM

论文:LIO-SAM:Tightly-coupled Lidar Inertial Odometry vis Smoothing and Mapping 是一个 实时激光雷达惯性里程计(lidar-inertial odometry)包。

0.3 系统架构

我们设计了一个系统,该系统可以维护两个图形,并且运行速度比实时快 10 倍。(比实时快10倍,实时是指的是激光雷达的频率吗?) "mapOptimization.cpp"中的因子图 (the factor graph) 优化了激光雷达里程计因子和 GPS 因子 (lidar odometry factor and GPS factor)。该因子图在整个测试过程中始终保持不变。 "imuPreintegration.cpp"中的因子图优化了 IMU 和激光雷达里程计因子(IMU and lidar odometry factor)并估计了 IMU 偏差。该因子图会定期重置,并保证在 IMU 频率下的实时里程估计。

0.4 LIO-SAM youtube视频演示:

https://www.youtube.com/watch?v=A0H8CoORZJU 视频部分截图如下:

Rotation Dataset:

Walking Dataset:

Park Dataset:

Campus Dataset:

Amsterdam Dataset:

stress test:

1. 编译与运行1.1 依赖

ROS相关:

sudo apt-get install -y ros-melodic-navigationsudo apt-get install -y ros-melodic-robot-localizationsudo apt-get install -y ros-melodic-robot-state-publisher1.2 gstam

(先不要急着安装)使用apt方法安装方式如下:

sudo add-apt-repository ppa:borglab/gtsam-release-4.0sudo apt install libgtsam-dev libgtsam-unstable-dev

之前用源码编译安装的,如下,这次就先不安装 https://blog.csdn.net/BIT_HXZ/article/details/127135551

1.2 安装cd ~/catkin_ws/srcgit clone https://github.com/TixiaoShan/LIO-SAM.gitcd ..catkin_make1.3 运行(1) launch文件:

roslaunch lio_sam run.launch 如果出现报错:

[lio_sam_imuPreintegration-2] process has died [pid 1671, exit code 127, cmd /home/meng/subject/Lio_sam_ws/devel/lib/lio_sam/lio_sam_imuPreintegration __name:=lio_sam_imuPreintegration __log:=/home/meng/.ros/log/635269ee-46bc-11ed-a61b-1c697af31044/lio_sam_imuPreintegration-2.log].[lio_sam_mapOptmization-5] process has died [pid 1672, exit code 127, cmd /home/meng/subject/Lio_sam_ws/devel/lib/lio_sam/lio_sam_mapOptmization __name:=lio_sam_mapOptmization __log:=/home/meng/.ros/log/635269ee-46bc-11ed-a61b-1c697af31044/lio_sam_mapOptmization-5.log].

缺少一些库。它们已安装但不可用,因为不在 LD_LIBRARY_PATH 环境变量中。所以将 /usr/local/lib 目录添加到变量中解决了我的问题。

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

(2) 播放数据包:

rosbag play your-bag.bag -r 3

2 lidar和imu数据准备2.1 准备lidar数据

用户需要准备正确格式的点云数据以进行点云校正(cloud deskewing),这主要在“imageProjection.cpp”中完成。

2.1.1 提供点云的时间戳

LIO-SAM 使用 IMU 数据执行点云校正. 因此,需要知道扫描中的相对点时间(the relative point time), 最新的 Velodyne ROS 驱动程序应直接输出此信息。在这里,我们假设点时间通道被称为"time"。点类型的定义位于"imageProjection.cpp"的顶部。"deskewPoint()"函数利用这个相对时间来获得这个点相对于扫描开始(the beginning of the scan)的变换。当激光雷达以 10Hz 旋转时,一个点的时间戳应该在 0 到 0.1 秒之间变化。 如果您使用其他激光雷达传感器,您可能需要更改此时间通道的名称,并确保它是扫描中的相对时间。

2.1.2 提供点所在环号(point ring number)

LIO-SAM 使用此信息在矩阵中正确组织点, 环号表示该点属于传感器的哪个通道。点类型的定义位于"imageProjection.cpp"的顶部, 最新的 Velodyne ROS 驱动程序应直接输出此信息。 同样,如果您使用其他激光雷达传感器,您可能需要重命名此信息。请注意,该软件包目前仅支持机械激光雷达。

2.2 准备imu数据(1)imu准备

与最初的 LOAM 实现一样,LIO-SAM 仅适用于 9-axis IMU,它提供横滚、俯仰和偏航估计(roll, pitch, and yaw estimation)。横滚和俯仰估计主要用于将系统初始化为正确的姿态。当使用 GPS 数据时,偏航估计将系统初始化在正确的航向。 从理论上讲,像 VINS-Mono 这样的初始化程序将使 LIO-SAM 能够与 6 轴 IMU 一起工作。系统的性能很大程度上取决于 IMU 测量的质量。 IMU 数据速率越高,系统精度就越好。 我们使用 Microstrain 3DM-GX5-25,它以 500Hz 的频率输出数据。我们建议使用至少提供 200Hz 输出速率的 IMU。注意,Ouster 激光雷达的内部 IMU 是一个 6 轴 IMU。

(2)imu对齐alignment

LIO-SAM 将 IMU 原始数据从 IMU 帧转换为 Lidar 帧,遵循 ROS REP-105[ROS坐标系] 法则(x - 向前,y - 左,z - 向上)。为了使系统正常运行,需要在"params.yaml"文件中提供正确的外部转换(the correct extrinsic transformation)。之所以有两个extrinsic(是extrinsicRot和extrinsicRPY嘛?),是因为我的IMU(Microstrain 3DM-GX5-25)加速度(acceleration)和姿态(attitude)坐标不同。取决于您的 IMU 制造商,您的 IMU 的两个外在参数可能相同也可能不同。 以作者的设置为例: ==>>需要设置 x-z 加速度(x-z acceleration)和陀螺仪负值(gyro negative)的读数来转换激光雷达坐标系(the lidar frame)中的 IMU 数据,这在 “params.yaml” 中由 “extrinsicRot” 表示。 ==>>姿态读数的转变可能略有不同。 IMU的姿态测量q_wb通常是指IMU坐标系中的点到世界坐标系(例如ENU)的旋转。但是,该算法需要 q_wl,即从激光雷达到世界的旋转。所以我们需要从激光雷达到 IMU 的旋转 q_bl,其中 q_wl = q_wb * q_bl。为方便起见,用户只需在"params.yaml"中提供q_lb为"extrinsicRPY"(如果加速度和姿态坐标相同,则与"extrinsicRot"相同)。

(3)imu调试

强烈建议用户取消注释 “imageProjection.cpp” 的 “imuHandler()” 中的调试行并测试转换后的 IMU 数据的输出(会在终端打印输出)。用户可以旋转传感器套件以检查读数是否与传感器的运动相对应。可以在此处找到显示更正 IMU 数据的 YouTube 视频链接到 YouTube。 imu与雷达坐标系:

imu调试:

3 样例数据集

下载链接:https://drive.google.com/drive/folders/1gJHwfdHCRdjP7vuT556pv8atqrCJPbUq

3.1 可使用默认设置运行的数据集(1)数据集LIO-SAM学习与运行测试数据集

步行数据集–walking dataset 公园数据集–Park dataset 花园数据集–Garden dataset

(2)公园数据集

公园数据集用于使用 GPS 数据测试 LIO-SAM。该数据集由 Yewei Huang(https://robustfieldautonomylab.github.io/people.html) 收集。 要启用 GPS 功能,请将"params.yaml"中的"gpsTopic"更改为"odometry/gps"。在 Rviz 中,取消选中"地图(云)“并选中"地图(全局)”。还要检查"Odom GPS",它可以可视化 GPS 里程计。 可以调整"gpsCovThreshold"以过滤不良 GPS 读数。 “poseCovThreshold"可用于调整将 GPS 因子添加到图形的频率。例如,您会注意到 GPS 会不断修正轨迹,因为您将"poseCovThreshold"设置为 1.0。由于 iSAM 的重度优化(heavy optimization),建议播放速度为”-r 1"。

poseCovThreshold 保持为默认的25m^2时:

点云地图:

poseCovThreshold 设置为1m^2,并显示gps时:

3.2 需要配置参数的数据集

(1)旋转数据集–Rotation dataset (2)校园数据集(large)–Campus dataset (large) (3)校园数据集(small)–Campus dataset (small)

在这些数据集中,点云主题是"points_raw"。 IMU 主题是"imu_correct",它给出了 ROS REP105 (ros的坐标系参考标准)标准中的 IMU 数据。由于此数据集不需要 IMU 转换,因此需要更改以下配置才能成功运行此数据集: ==>>“config/params.yaml"中的"imuTopic"参数需要设置为"imu_correct”。 imuTopic: "imu_raw" # IMU data ==>>"config/params.yaml"中的"extrinsicRot"和"extrinsicRPY"需要设置为单位矩阵(identity matrices)。

# extrinsicRot: [1, 0, 0, # 0, 1, 0, # 0, 0, 1] # extrinsicRPY: [1, 0, 0, # 0, 1, 0, # 0, 0, 1]3.3 Ouster (OS1-128) 数据集–Rooftop dataset(1)数据集描述

如果您使用默认设置,则无需更改此数据集的外部参数。请按照下面的 Ouster 说明配置包以使用 Ouster 数据运行。可以在 YouTube 上找到该数据集的视频:

(2)准备工作

硬件部分: ==>>使用外部 IMU。 LIO-SAM 不适用于 Ouster 激光雷达的内部 6 轴 IMU。您需要将 9 轴 IMU 连接到激光雷达并执行数据收集(data-gathering)。 ==>>配置驱动程序。将 Ouster 启动文件中的"timestamp_mode"更改为"TIME_FROM_PTP_1588",这样您就可以为点云设置 ROS 格式的时间戳。 Config: ==>>将"params.yaml"中的"sensor"更改为"ouster"。 ==>>根据您的激光雷达更改"params.yaml"中的"N_SCAN"和"Horizo​​n_SCAN",即N_SCAN=128,Horizo​​n_SCAN=1024。

注:Gen 1 和 Gen 2 Ouster:似乎不同版本的点坐标定义可能不同。请参阅问题 #94 进行调试。

(3)自己运行

一个终端: roslaunch lio_sam run.launch export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib 另一个终端: rosbag play your-bag.bag 运行效果:

全局地图:

(4)自我体会

可以清楚看出:数据集具有楼顶和地面两个平面,属于是多个平面了

3.4 Livox Horizon数据集–Livox Horizon(1)说明:

请注意,固态激光雷达尚未经过 LIO-SAM 的广泛测试。这里也使用外部 IMU,而不是内部 IMU。对此类激光雷达的支持基于对机械激光雷达代码库的最小更改。需要使用定制的 livox_ros_driver 来发布 LIO-SAM 可以处理的点云格式。

(2)配置

请更改以下参数以使 LIO-SAM 与 Livox Horizo​​n 激光雷达一起工作:

sensor: livox N_SCAN: 6 Horizon_SCAN: 4000 edgeFeatureMinValidNum: 1(3)自己运行

全局(点云)地图:

(4)自我体会

环境是不是选的不是很好?点云效果很乱 固态雷达不能和lio-sam很好地适应?

3.5 KITTI 数据集–2011_09_30_drive_0028(1)数据集描述

数据集包括的话题和话题频率如下:

要使用其他 KITTI 原始数据生成更多包,您可以使用“config/doc/kitti2bag(之前的使用笔记:https://blog.csdn.net/BIT_HXZ/article/details/124319662)”中提供的 python 脚本。

(2)数据集外部参数修改

由于 LIO-SAM 需要高频 IMU 才能正常运行,因此我们需要使用 KITTI 原始数据(kitti raw data)进行测试。一个尚未解决的问题是 IMU 的内在特性是未知的,这对 LIO-SAM 的准确性有很大影响。下载提供的示例数据并在"params.yaml"中进行以下更改:

extrinsicTrans: [-8.086759e-01, 3.195559e-01, -7.997231e-01]extrinsicRot: [9.999976e-01, 7.553071e-04, -2.035826e-03, -7.854027e-04, 9.998898e-01, -1.482298e-02, 2.024406e-03, 1.482454e-02, 9.998881e-01]extrinsicRPY: [9.999976e-01, 7.553071e-04, -2.035826e-03, -7.854027e-04, 9.998898e-01, -1.482298e-02, 2.024406e-03, 1.482454e-02, 9.998881e-01]N_SCAN: 64downsampleRate: 2 or 4loopClosureEnableFlag: true or false(3)github参考建图效果

github参考图:

(4)自己运行

一个终端: roslaunch lio_sam run.launch export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib 另一个终端:(注意不要带上 -r 3,可能是因为kitti数据量比较大,带上的话建图会乱) rosbag play your-bag.bag

(5)自我体会

可以清楚看出:没有滤除动态目标

4 其他说明4.1 params.yaml # Export settings savePCD: true savePCDDirectory: "/Downloads/LOAM/"

修改输出参数为true会在:/Downloads/LOAM/文件夹下生成pcd文件:

终端输入 pcl_viewer xx.pcd 即可查看

本文链接地址:https://www.jiuchutong.com/zhishi/290764.html 转载请保留说明!

上一篇:unet网络详解(unet网络的优缺点)

下一篇:穆尔森林国家纪念碑,加利福尼亚州旧金山 (© Mia2you/Shutterstock)(穆尔官网)

  • 小米手机怎么关闭实况拍照的(小米手机怎么关闭自动任务)

    小米手机怎么关闭实况拍照的(小米手机怎么关闭自动任务)

  • 云闪付怎么绑定银行卡(云闪付怎么绑定微信)

    云闪付怎么绑定银行卡(云闪付怎么绑定微信)

  • word怎样删除最后一页(word文档忘了保存,如何恢复最近)

    word怎样删除最后一页(word文档忘了保存,如何恢复最近)

  • 华为息屏显示怎么设置(huawei息屏显示)

    华为息屏显示怎么设置(huawei息屏显示)

  • ipad6代多少寸(ipad6代是几寸)

    ipad6代多少寸(ipad6代是几寸)

  • 抖音里的回关怎么意思是什么(抖音里的回关怎么来的)

    抖音里的回关怎么意思是什么(抖音里的回关怎么来的)

  • 手机外屏碎了能用多久(手机外屏碎了能换吗)

    手机外屏碎了能用多久(手机外屏碎了能换吗)

  • 华为nova7怎么关闭横屏呢(华为nova7怎么关闭纯净模式)

    华为nova7怎么关闭横屏呢(华为nova7怎么关闭纯净模式)

  • push是什么指令(PUSH是什么指令)

    push是什么指令(PUSH是什么指令)

  • hisuite通过hdb连接设备是什么意思

    hisuite通过hdb连接设备是什么意思

  • 检查打印机模式什么意思(打印机显示请检查打印机模式)

    检查打印机模式什么意思(打印机显示请检查打印机模式)

  • 红米note8pro带壳和膜不(红米note8 pro手机壳)

    红米note8pro带壳和膜不(红米note8 pro手机壳)

  • 抖音里的抖币怎么提现(抖音里的抖币怎么换成钱)

    抖音里的抖币怎么提现(抖音里的抖币怎么换成钱)

  • word文档怎么设置表格列宽(word文档怎么设置背景图片)

    word文档怎么设置表格列宽(word文档怎么设置背景图片)

  • 手机语音播报怎么关闭(手机语音播报怎么设置)

    手机语音播报怎么关闭(手机语音播报怎么设置)

  • 路由器电源开关在哪(路由器电源开关自动跳)

    路由器电源开关在哪(路由器电源开关自动跳)

  • word两个页面并排(word两页面并排弄成一页)

    word两个页面并排(word两页面并排弄成一页)

  • 手机qq送生日礼物怎么看(qq生日送的礼物钱去哪了)

    手机qq送生日礼物怎么看(qq生日送的礼物钱去哪了)

  • 三星手机反向充电怎么关闭(三星手机反向充电可以给苹果充电吗)

    三星手机反向充电怎么关闭(三星手机反向充电可以给苹果充电吗)

  • 华硕电脑硬盘在哪(华硕硬盘在哪里)

    华硕电脑硬盘在哪(华硕硬盘在哪里)

  • 手机设置黑名单后对方听到的是(手机设置黑名单在哪里)

    手机设置黑名单后对方听到的是(手机设置黑名单在哪里)

  • 魅族16s如何关机(魅族16x怎么关机重启)

    魅族16s如何关机(魅族16x怎么关机重启)

  • airpods怎么戴(airpods怎么戴上就自动放歌)

    airpods怎么戴(airpods怎么戴上就自动放歌)

  • 小米8屏幕指纹版和小米8区别(小米8屏幕指纹和后置指纹的区别)

    小米8屏幕指纹版和小米8区别(小米8屏幕指纹和后置指纹的区别)

  • 华为mate50刷机教程(华为mate刷机能刷用户锁吗)

    华为mate50刷机教程(华为mate刷机能刷用户锁吗)

  • 马齿笕对什么病最有效(马齿笕对什么病最有效?)

    马齿笕对什么病最有效(马齿笕对什么病最有效?)

  • 纳税申报表申报日期
  • 非税收入票据能否税前扣除
  • 美元利息结汇时结汇项目是什么
  • 其他收益科目代码
  • 装载机折旧年限是几年
  • 销售企业需要交的营业税
  • 开具增值税专用发票的要求
  • 劳务公司差额开票的方式有哪些
  • 利润为负会计分录
  • 以前纳税申报表在哪里查询
  • 汇算清缴应纳税所得额5万要交多少税
  • 发票显示不抵扣什么意思
  • 老板报销没有发票怎么办
  • 税收编码更改的依据是什么
  • 固定资产的残值怎么算出来的
  • 发票红冲作废是什么意思
  • 以前年度损益调整
  • 银行汇票超期退回怎么办
  • 合伙企业个人所得税计算案例
  • 清算期待摊费用怎么计算
  • 企业银行存款转定期分录怎样操作
  • 融资租赁的利息可以税前扣除吗
  • 银行手续费会开发票吗
  • 询证函有法律效力吗
  • 培训费发票模板
  • 购买烟酒送人是否需要纳税
  • PHP:mb_output_handler()的用法_mbstring函数
  • 总公司的固定资产可以划转子公司
  • win10电脑电源选项怎样设置最好
  • dc.exe是什么程序
  • 免征的增值税如何处理
  • 营改增开始时间
  • php封包
  • 银行转来委托收款
  • 华侨是否适用个人所得税
  • 海滨德拉海滩庄园别墅
  • 常用的3个第三方类库
  • php的框架有哪些
  • 城市公交网
  • 领航ct
  • 旅游业发票的税率是多少
  • python getpass模块
  • 应收账款减值损失计入
  • 模具固定资产如何核算
  • 消耗性生物资产的账务处理
  • 小微公司开票
  • mongodb数据删除
  • 企业所得税报表查询怎么查
  • 关于sqlserver数据库服务器登录账户的说法错误的是
  • 收到营业外收入政府补贴的会计分录
  • 转账结算的原则是什么
  • 建行E信通贴现需要发票吗
  • 搬迁赔偿款
  • 公司注销后如何起诉他人
  • 应收账款管理制度
  • 收到代理服务费怎么做分录呢
  • 金蝶旗舰版的数据怎么在标准版打开
  • 月初计提工资,月中发放
  • 记账凭证的基本内容包括制证,审核,记账,会计主管
  • 索引的基本原则
  • 被放弃的遗产
  • linux设置时间日期
  • centos7 eth
  • win8有几种版本
  • 联想笔记本从U盘启动
  • win7对比vista
  • windowxp操作系统
  • win7如何打开远程桌面连接
  • 如何调整windows桌面图标大小
  • centos7误删除怎么恢复
  • 自动释放池原理,本质
  • 自动重启服务脚本
  • 深入python3
  • 安卓下载功能
  • js mvvm 原理
  • 用javascript
  • javascript面向对象吗
  • 山东省关于退林还耕的规定
  • 江苏税务新办企业套餐
  • 民办非营利医院所得税
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设