位置: IT常识 - 正文

超分算法之SRCNN(超分模型)

编辑:rootadmin
超分算法之SRCNN

推荐整理分享超分算法之SRCNN(超分模型),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:超分系统,超分系统,超分技术,超分算法原理,超分模型,超分技术,srcnn超分辨算法训练,srcnn超分辨算法训练,内容如对您有帮助,希望把文章链接给更多的朋友!

这篇文章是2014年的一篇论文,其主要意义在于作者推出的SRCNN是深度学习在超分上开篇之作!SRCNN证明了深度学习在超分领域的应用可以超越传统的插值等办法取得较高的表现力。

参考目录: ①深度学习图像超分辨率开山之作SRCNN(一)原理分析 ②深度学习端到端超分辨率方法发展历程

SRCNN1 SRCNN简介2 SRCNN模型结构3 Loss function:4 实验4.1 setup4.2 实验结果4.2.1 performance4.2.2 runtime5 进一步研究5.1 滤波器学习情况5.2 ImageNet学习5.3 滤波器数量5.4 滤波器大小6 效果展示7 总结1 SRCNN简介

作者推出了一种基于SISR的超分方法。这种方法基于深度学习,旨在实现一种端对端的网络模型——SRCNN,其用于将低分辨率的图像转换为高分辨图像。作者指出,SRCNN在当时的数据集下达到了SOAT的水平。

SRCNN具有结构简单且低失真度的特点:如上图所示,只需要一定的训练回合,SRCNN就可以超过传统的超分方法。

在一定数量的卷积层结构下,SRCNN可以达到fast-training。

实验表明,在一定范围内,越大的数据集和较大的网络模型可以提升SRCNN对图像的重建效果。

2 SRCNN模型结构

首先说明以下符号的含义:

YYY:输入图像经过预处理(双三次插值)得到的图像,我们仍将YYY当作是低分辨率图像,但它的size要比输入图像要大。F(Y)F(Y)F(Y):网络最后输出的图像,我们的目标就是通过优化F(Y)F(Y)F(Y)和Ground-Truth之间的loss来学会这个函数F(⋅)F(\cdot)F(⋅)。XXX:高分辨率图像,即Ground-Truth,它和YYY的size是相同的。

如上图所示是SRCNN的网络模型,其分为三部分,分别是: ①:Patch extraction and representation(其实就是图像特征提取层)。通过CNN将图像YYY的特征提取出来存到向量中,这个向量里包含了多张feature map,即一张图所含的一些特征。 ②:非线性映射层。将上一层的feature map进一步做非线性映射处理,使得网络深度加大,更有利于学到东西。 ③:网络重建层。重建用于将feature map进行还原成高分辨率图像F(Y)F(Y)F(Y),其与XXX做loss并通过反传来学习整个模型的参数。

超分算法之SRCNN(超分模型)

下面分别详细展开论述上面三个层。

特征提取层: 特征提取层用了一层的CNN以及ReLU去将图像YYY变成一堆堆向量,即feature map: F1(Y)=max(,W1⋅Y+B1).F_1(Y) = max(0, W_1\cdot Y+B_1).F1​(Y)=max(0,W1​⋅Y+B1​).其中W1、B1W_1、B_1W1​、B1​是滤波器(卷积核)的参数,这是一个f1×f1f_1\times f_1f1​×f1​大小的窗口,通道数为YYY的通道ccc,一共有n1n_1n1​个滤波器。 Note:

经过这一层,图像YYY的大小以及通道数都会发生改变。max(,x)max(0,x)max(0,x)表示ReLU层。

非线性映射层: 这一层就是将上一层的feature map再用卷积核过滤一次以及ReLU层进行激活,也可以理解为为了加深网络从而更好的学习函数F(⋅)F(\cdot)F(⋅): F2(Y)=max(,W2⋅F1(X)+B2).F_2(Y) = max(0, W_2\cdot F_1(X)+B_2).F2​(Y)=max(0,W2​⋅F1​(X)+B2​).大致结构和特征提取层一样,不一样的是这一层只是为了增加网络模型的非线性程度,所以只需采用1×11\times 11×1的卷积核就可以了,其通道数为n1n_1n1​,一共有n2n_2n2​个滤波器。当然可以继续增加非线性层,但是本文旨在推出一种通用性SR框架,所以会选择最简的网络模型。

图像重建层: 借鉴于传统超分的纯插值办法——对图像局部进行平均化的思想,其本质就是乘加结合的方式,因此作者决定采用卷积的方式(也是乘加结合的方式)去做重建: F(Y)=W3⋅F2(Y)+B3.F(Y) = W_3\cdot F_2(Y) + B_3.F(Y)=W3​⋅F2​(Y)+B3​.这一层是不需要ReLU层的,且卷积核的大小为n2×c×f3×f3n_2\times c \times f_3 \times f_3n2​×c×f3​×f3​. Note:

也可以从另一个角度来考虑,经过前面的卷积之后,图像的size变小了,因此需要上采样过程来恢复图像,势必需要一个反卷积来做这件事,而反卷积本质也是卷积的一种。3 Loss function:

设batchsize为nnn,SRCNN网络参数集为Θ={W1,W2,W3,B1,B2,B3}\Theta = \{W_1, W_2, W_3, B_1, B_2, B_3\}Θ={W1​,W2​,W3​,B1​,B2​,B3​},则Loss function可定义为: L(Θ)=1n∑i=1n∣∣F(Yi;Θ)−Xi∣∣2.L(\Theta) = \frac{1}{n}\sum^n_{i=1}||F(Y_i;\Theta) - X_i||^2.L(Θ)=n1​i=1∑n​∣∣F(Yi​;Θ)−Xi​∣∣2.Note:

选择MSE作为损失函数的一个重要原因是MSE的格式和我们图像失真评价指标PSNR很像,因此可以理解为SRCNN是直接冲着提升PSNR去的,从而让高分辨率的图像有较小的失真度。MSE就是迫使网络将我们恢复的SR图像向着Ground-Truth(标签XXX)的方向靠近。4 实验4.1 setup

实验的一些比较重要的配置如下:

Training-data涉及91张图片。Set5数据集涉及5张图片用于up-scale-factor={2,3,4}的验证与测试;Set14数据集涉及14张图片用于up-scale-factor=3的验证与测试。实验的一些参数设置:f1=9,f3=5,n1=64,n2=32f_1=9,f_3=5,n_1=64,n_2=32f1​=9,f3​=5,n1​=64,n2​=32.Ground-Truth的大小是32×3232\times 3232×32。卷积核的参数初始化来自于:wi∼N(,0.001)w_i^0\sim\mathcal{N}(0, 0.001)wi0​∼N(0,0.001)。SRCNN一共3层网络,前两层配置的学习率为1−410^{-4}10−4,最后一层的学习率配置为1−510^{-5}10−5,作者指出这种让最后一层较小的学习率有利于网络收敛。4.2 实验结果4.2.1 performance

从上图看出SRCNN的PSNR在大部分图片中都取得了最佳的值!此外,所消耗的时间也是最少的。

4.2.2 runtime

从上图可以看出SRCNN有最少的runtime!

5 进一步研究5.1 滤波器学习情况

上图是特征提取层滤波器的学习可视化图,在91张图片的训练结果,其中up-scale-factor=2。 图像a、f:类似于高斯分布。 图像b、c、d:类似于边缘检测。 图像e:类似于纹理检测。 其余:一些坏死的卷积核参数。

5.2 ImageNet学习

作者这一节旨在探究数据集的大小对performance的影响。

采用ILSVRC 2013的ImageNet数据集和91张图片这两个训练集做对比训练。在Set5数据上做测试,up-scale-factor=3。

实验结果如下: 从图中可知,大的数据集对表现力的提升是有帮助的(虽然我们都知道,但是作者还是做个实验来证明下)。

5.3 滤波器数量

作者研究滤波器数量对PSNR的提升影响,设置了3组实验,结果如下: 实验结果表明卷积核的数量对表现力是有提升的,但是数量的增加也带来了runtime的增加,如果你想获取快速的重建效果,建议还是取小数量的卷积核更好。

5.4 滤波器大小

作者研究滤波器size对PSNR的提升影响,进行了2组实验,分别是: f1=9,f3=5f_1=9,f_3=5f1​=9,f3​=5和f1=11,f3=7f_1=11,f_3=7f1​=11,f3​=7。 从实验结果来看,较大的卷积核可以提取更好的特征信息,但是也带来了runtime的上升,因此实际中我们需要根据实际情况进行trade-off。

6 效果展示

7 总结本文作为SR在深度学习领域的开篇之作,提出了一种通用性框架SRCNN,将输入图像进行Bicubic插值预处理,然后特征提取,非线性映射,最后进行重建;重建后的图像与Ground-Truth做loss来迫使网络学习到如何从LR→HRLR \to HRLR→HR的知识。选用深度学习常用的MSE作为Loss function,因为MSE与PSNR有着相似的表达式。SRCNN在PSNR和runtime上都表现不俗,超越了当时的SOAT,表征了这种框架的实用性。作者做了一系列实验,其中包括可视化乐特征提取到的向量是怎么样的;大的数据集对表现力的提升是有帮助的;卷积核的数量的增加对表现力是有提升的,但是数量的增加也带来了runtime的增加;较大的卷积核可以提取更好的特征信息,但是也带来了runtime的上升。
本文链接地址:https://www.jiuchutong.com/zhishi/288118.html 转载请保留说明!

上一篇:layui-icon各种常用动态图标(layui iconfont)

下一篇:vue中,给一个URL地址,利用FileSaver.js插件下载文件到本地(vue url 参数)

  • 苹果xs录屏在哪里(xs苹果录屏功能在哪)

    苹果xs录屏在哪里(xs苹果录屏功能在哪)

  • 苹果的微信分身在哪下载(苹果的微信分身安全吗)

    苹果的微信分身在哪下载(苹果的微信分身安全吗)

  • 电脑版WPS怎么分页(电脑版wps怎么分享)

    电脑版WPS怎么分页(电脑版wps怎么分享)

  • 清理灰尘的音波(清灰尘音波播放)

    清理灰尘的音波(清灰尘音波播放)

  • 华为手机自动拨110(华为手机自动拨号)

    华为手机自动拨110(华为手机自动拨号)

  • 充电鼠标怎么看已充满(充电鼠标怎么看电量多少)

    充电鼠标怎么看已充满(充电鼠标怎么看电量多少)

  • 抖音为什么登不上之前的号了(抖音为什么登不上去老是频繁)

    抖音为什么登不上之前的号了(抖音为什么登不上去老是频繁)

  • 小爱同学隐藏的黑科技有哪些(小爱同学隐藏的黑科技)

    小爱同学隐藏的黑科技有哪些(小爱同学隐藏的黑科技)

  • 模拟信号电流输出信号采用什么制(什么是模拟信号输入电路)

    模拟信号电流输出信号采用什么制(什么是模拟信号输入电路)

  • 7p指纹不灵敏怎么回事(7p指纹识别不了什么原因)

    7p指纹不灵敏怎么回事(7p指纹识别不了什么原因)

  • 对方发朋友圈提醒功能(发朋友圈提到了对方,对方能知道吗)

    对方发朋友圈提醒功能(发朋友圈提到了对方,对方能知道吗)

  • 快手无法关注对方怎么回事(快手无法关注对方怎么办)

    快手无法关注对方怎么回事(快手无法关注对方怎么办)

  • 怎么找回删除的软件(怎么找回删除的手机短信)

    怎么找回删除的软件(怎么找回删除的手机短信)

  • 快手企业认证好处(快手企业认证有什么好处?怎么认证?)

    快手企业认证好处(快手企业认证有什么好处?怎么认证?)

  • 苹果手机下载不了软件怎么回事(苹果手机下载不了微信)

    苹果手机下载不了软件怎么回事(苹果手机下载不了微信)

  • 华为mate30微信视频怎么美颜

    华为mate30微信视频怎么美颜

  • iphone8怎么开夜景拍照(iphone8plus夜间模式)

    iphone8怎么开夜景拍照(iphone8plus夜间模式)

  • 微信清理聊天记录可以恢复吗(微信清理聊天记录后找不到群聊了)

    微信清理聊天记录可以恢复吗(微信清理聊天记录后找不到群聊了)

  • 苹果xr双卡双待吗(苹果xr双卡双待怎么用)

    苹果xr双卡双待吗(苹果xr双卡双待怎么用)

  • k歌直播声卡v8怎么用(k歌直播声卡v8怎么连接蓝牙手机)

    k歌直播声卡v8怎么用(k歌直播声卡v8怎么连接蓝牙手机)

  • 怎么调照片大小kb(金山文档怎么调照片大小)

    怎么调照片大小kb(金山文档怎么调照片大小)

  • 拼多多如何取消拼单(拼多多如何取消退款)

    拼多多如何取消拼单(拼多多如何取消退款)

  • 苹果系统如何访问Windows共享文件夹?Mac访问Windows共享文件夹的方法(苹果系统如何访问相册)

    苹果系统如何访问Windows共享文件夹?Mac访问Windows共享文件夹的方法(苹果系统如何访问相册)

  • Mac电脑finder是什么意思 Mac Finder的10个使用技巧(苹果电脑里的finder是什么)

    Mac电脑finder是什么意思 Mac Finder的10个使用技巧(苹果电脑里的finder是什么)

  • vue 高德地图添加多个点标记(vue3使用高德地图)

    vue 高德地图添加多个点标记(vue3使用高德地图)

  • 什么时候公司需要赔偿员工
  • 购买汽车的印花税要计入汽车原值吗
  • 普通发票作废要收回吗
  • 增值税核算应设置什么
  • 增值税普通发票需要交税吗
  • 一年内到期的非流动负债是经营性负债吗
  • 进口消费税为什么一定要组价
  • 劳务公司涉及的税收
  • 固定资产无法使用不能带来经济利益是否需计提租金
  • 劳务派遣公司简介模板范文
  • 员工离职补偿需要计提吗
  • 装卸搬运费是否含税
  • 利息可以开专票
  • 税务行业软件
  • 以前年度多列的费用今年交回
  • 出口货物收汇是什么意思
  • 收到个人缴纳的办证费
  • 现在还有餐饮许可证吗
  • 第三方要求
  • 医疗废物处置费是什么意思
  • cmd telnet命令大全
  • 企业利润分配的原则
  • 不予抵扣的进项税额是什么意思
  • Win11怎么设置开机跳过密码
  • 冲销去年暂估收入
  • ubuntu22.04更换RTX 4090显卡后,安装驱动和pytorch记录
  • php字符串变量
  • 票据贴现办法
  • php框架的作用
  • PHP:imagesetthickness()的用法_GD库图像处理函数
  • 远期外汇交易会有风险吗
  • 买保险公司的养老保险合适吗
  • wordpress调试模式
  • 一般纳税人在什么情况下,不可以开具增值税专用发票
  • 如何配置apache
  • hive dt
  • 职工慰问金账务处理流程
  • 税务自查报告要盖什么章
  • discuz 首页设置
  • 小微企业减免额怎么计算
  • db2 deadlock
  • 商品编码原则是指什么
  • 揭秘如何投屏纽约时代广场
  • mongodb数据库语句
  • 视同销售的几种情况都有什么?
  • 新会计准则其他收益核算内容
  • 其他业务收入如何核算
  • 会计丁字记账法
  • 以前年度损益调整账务处理分录
  • 本月损益类未结转为零的一级科目怎么操作
  • 现金存入银行的会计凭证
  • 税前扣除的职工福利费支出怎么算
  • 我国流转税有哪些
  • 受托方受托代销商品会计分录
  • 短期借款的相关法规
  • 内部招待所管理规定
  • 财务费用具体包括
  • 装修费用怎么结算
  • 稳岗补贴会计分录怎么做,需要缴纳企业所得税不
  • 取消windows开机登录密码
  • linux根文件系统直接解压到硬盘
  • win7开启远程设置
  • 家用电脑是什么机型
  • win8个性化外观恢复默认设置
  • rmxp4droid for 天敏电视盒子
  • cocos2dx tableview基础:实现多图片的滑动显示
  • [edge(边缘)]
  • 简单解析空中三角测量的意义
  • nodejs爬取数据
  • node.js怎么搭建服务器
  • javascript基础笔记
  • python中zip函数的用法
  • maxlength属性设置为0
  • javascript程序设计教程
  • linux中安装python的工具包
  • 江西国税局电子税务局
  • 契税含不含精装修
  • 福建省狱警招聘医生
  • 记账凭证编制的依据可以用
  • 新四板企业哪里可以查询
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设